J. J. Heine, S. R. Deans, D. K. Cullers, R. Stauduhar, L. P. Clarke, “Multiresolution statistical analysis of high-resolution digital mammograms,” IEEE Trans. Med. Imaging 16, 503–515 (1997).

[CrossRef]
[PubMed]

G. H. Watson, S. K. Watson, “Detection of unusual events in intermittent non-Gaussian images using multiresolution background models,” Opt. Eng. 35, 3159–3171 (1996).

[CrossRef]

D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).

[CrossRef]
[PubMed]

J.-L. Chen, A. Kundu, “Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model,” IEEE Trans. Pattern. Anal. Mach. Intell. 16, 208–214 (1994).

[CrossRef]

M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Process. 1, 205–220 (1992).

[CrossRef]
[PubMed]

J. G. Jones, R. W. Thomas, P. G. Earwicker, S. Addison, “Multiresolution statistical analysis of computer-generated fractal imagery,” CVGIP Graph. Models Image Process. 53, 349–363 (1991).

[CrossRef]

S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern. Anal. Mach. Intell. 11, 674–693 (1989).

[CrossRef]

D. I. Barnea, H. F. Silverman, “A class of algorithms for fast digital image registration,” IEEE Trans. Comput. C-21, 179–186 (1972).

[CrossRef]

J. G. Jones, R. W. Thomas, P. G. Earwicker, S. Addison, “Multiresolution statistical analysis of computer-generated fractal imagery,” CVGIP Graph. Models Image Process. 53, 349–363 (1991).

[CrossRef]

L. Andersson, N. Hall, B. Jawerth, G. Peters, “Wavelets on closed subsets of the real line,” in Recent Advances in Wavelet Analysis, L. L. Schumaker, G. Webb, eds. (Academic, Boston, Mass., 1994).

M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Process. 1, 205–220 (1992).

[CrossRef]
[PubMed]

M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Process. 1, 205–220 (1992).

[CrossRef]
[PubMed]

D. I. Barnea, H. F. Silverman, “A class of algorithms for fast digital image registration,” IEEE Trans. Comput. C-21, 179–186 (1972).

[CrossRef]

D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).

[CrossRef]
[PubMed]

R. Bracewell, “The Fourier Transform and Its Applications,” 2nd ed. (McGraw-Hill, New York, 1986).

J.-L. Chen, A. Kundu, “Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model,” IEEE Trans. Pattern. Anal. Mach. Intell. 16, 208–214 (1994).

[CrossRef]

D. M. Titterington, A. F. M. Smith, U. E. Makov, Chichester, Statistical Analysis of Finite Mixture Distributions (Wiley, New York, 1985).

V. V. Digalakis, K. C. Chou, “Maximum likelihood identification of multiscale stochastic models using the wavelet transform and the EM algorithm,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing ’93 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1993), pp. 93–96.

K. C. Chou, S. Golden, A. S. Willsky, “Modeling and estimation of multiscale stochastic processes,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing ’91 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1991), pp. 1709–1712.

J. J. Heine, S. R. Deans, D. K. Cullers, R. Stauduhar, L. P. Clarke, “Multiresolution statistical analysis of high-resolution digital mammograms,” IEEE Trans. Med. Imaging 16, 503–515 (1997).

[CrossRef]
[PubMed]

J. J. Heine, S. R. Deans, D. K. Cullers, R. Stauduhar, L. P. Clarke, “Multiresolution statistical analysis of high-resolution digital mammograms,” IEEE Trans. Med. Imaging 16, 503–515 (1997).

[CrossRef]
[PubMed]

M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Process. 1, 205–220 (1992).

[CrossRef]
[PubMed]

I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1992).

J. J. Heine, S. R. Deans, D. K. Cullers, R. Stauduhar, L. P. Clarke, “Multiresolution statistical analysis of high-resolution digital mammograms,” IEEE Trans. Med. Imaging 16, 503–515 (1997).

[CrossRef]
[PubMed]

V. V. Digalakis, K. C. Chou, “Maximum likelihood identification of multiscale stochastic models using the wavelet transform and the EM algorithm,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing ’93 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1993), pp. 93–96.

J. G. Jones, R. W. Thomas, P. G. Earwicker, S. Addison, “Multiresolution statistical analysis of computer-generated fractal imagery,” CVGIP Graph. Models Image Process. 53, 349–363 (1991).

[CrossRef]

B. Gold, G. O. Young, “The response of linear systems to non-Gaussian noise,” IRE Trans. Inf. Theory PGIT 2-4, 63–67 (1953/54).

K. C. Chou, S. Golden, A. S. Willsky, “Modeling and estimation of multiscale stochastic processes,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing ’91 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1991), pp. 1709–1712.

L. Andersson, N. Hall, B. Jawerth, G. Peters, “Wavelets on closed subsets of the real line,” in Recent Advances in Wavelet Analysis, L. L. Schumaker, G. Webb, eds. (Academic, Boston, Mass., 1994).

J. J. Heine, S. R. Deans, D. K. Cullers, R. Stauduhar, L. P. Clarke, “Multiresolution statistical analysis of high-resolution digital mammograms,” IEEE Trans. Med. Imaging 16, 503–515 (1997).

[CrossRef]
[PubMed]

J. J. Heine, “Multiresolution statistical analysis of high resolution digitized mammograms and other gray scaled images,” Ph.D. dissertation (University of South Florida, Tampa, Fla., 1996).

C. W. Helstrom, Probability and Stochastic Processes for Engineers, 2nd ed. (Macmillan, New York, 1991).

L. Andersson, N. Hall, B. Jawerth, G. Peters, “Wavelets on closed subsets of the real line,” in Recent Advances in Wavelet Analysis, L. L. Schumaker, G. Webb, eds. (Academic, Boston, Mass., 1994).

N. L. Johnson, S. Kotz, Continuous Univariant Distributions, 2nd ed. (Wiley, New York, 1995), Vol. 2.

J. G. Jones, R. W. Thomas, P. G. Earwicker, S. Addison, “Multiresolution statistical analysis of computer-generated fractal imagery,” CVGIP Graph. Models Image Process. 53, 349–363 (1991).

[CrossRef]

N. L. Johnson, S. Kotz, Continuous Univariant Distributions, 2nd ed. (Wiley, New York, 1995), Vol. 2.

J.-L. Chen, A. Kundu, “Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model,” IEEE Trans. Pattern. Anal. Mach. Intell. 16, 208–214 (1994).

[CrossRef]

D. M. Titterington, A. F. M. Smith, U. E. Makov, Chichester, Statistical Analysis of Finite Mixture Distributions (Wiley, New York, 1985).

S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern. Anal. Mach. Intell. 11, 674–693 (1989).

[CrossRef]

M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Process. 1, 205–220 (1992).

[CrossRef]
[PubMed]

L. Andersson, N. Hall, B. Jawerth, G. Peters, “Wavelets on closed subsets of the real line,” in Recent Advances in Wavelet Analysis, L. L. Schumaker, G. Webb, eds. (Academic, Boston, Mass., 1994).

D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).

[CrossRef]
[PubMed]

D. I. Barnea, H. F. Silverman, “A class of algorithms for fast digital image registration,” IEEE Trans. Comput. C-21, 179–186 (1972).

[CrossRef]

D. M. Titterington, A. F. M. Smith, U. E. Makov, Chichester, Statistical Analysis of Finite Mixture Distributions (Wiley, New York, 1985).

J. J. Heine, S. R. Deans, D. K. Cullers, R. Stauduhar, L. P. Clarke, “Multiresolution statistical analysis of high-resolution digital mammograms,” IEEE Trans. Med. Imaging 16, 503–515 (1997).

[CrossRef]
[PubMed]

J. G. Jones, R. W. Thomas, P. G. Earwicker, S. Addison, “Multiresolution statistical analysis of computer-generated fractal imagery,” CVGIP Graph. Models Image Process. 53, 349–363 (1991).

[CrossRef]

D. M. Titterington, A. F. M. Smith, U. E. Makov, Chichester, Statistical Analysis of Finite Mixture Distributions (Wiley, New York, 1985).

G. H. Watson, S. K. Watson, “Detection of unusual events in intermittent non-Gaussian images using multiresolution background models,” Opt. Eng. 35, 3159–3171 (1996).

[CrossRef]

G. H. Watson, S. K. Watson, “Detection of unusual events in intermittent non-Gaussian images using multiresolution background models,” Opt. Eng. 35, 3159–3171 (1996).

[CrossRef]

K. C. Chou, S. Golden, A. S. Willsky, “Modeling and estimation of multiscale stochastic processes,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing ’91 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1991), pp. 1709–1712.

G. Wornell, Signal Processing with Fractals: A Wavelet-Based Approach (Prentice-Hall, Englewood Cliffs, N.J., 1996).

B. Gold, G. O. Young, “The response of linear systems to non-Gaussian noise,” IRE Trans. Inf. Theory PGIT 2-4, 63–67 (1953/54).

J. G. Jones, R. W. Thomas, P. G. Earwicker, S. Addison, “Multiresolution statistical analysis of computer-generated fractal imagery,” CVGIP Graph. Models Image Process. 53, 349–363 (1991).

[CrossRef]

D. I. Barnea, H. F. Silverman, “A class of algorithms for fast digital image registration,” IEEE Trans. Comput. C-21, 179–186 (1972).

[CrossRef]

M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Process. 1, 205–220 (1992).

[CrossRef]
[PubMed]

J. J. Heine, S. R. Deans, D. K. Cullers, R. Stauduhar, L. P. Clarke, “Multiresolution statistical analysis of high-resolution digital mammograms,” IEEE Trans. Med. Imaging 16, 503–515 (1997).

[CrossRef]
[PubMed]

S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern. Anal. Mach. Intell. 11, 674–693 (1989).

[CrossRef]

J.-L. Chen, A. Kundu, “Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model,” IEEE Trans. Pattern. Anal. Mach. Intell. 16, 208–214 (1994).

[CrossRef]

B. Gold, G. O. Young, “The response of linear systems to non-Gaussian noise,” IRE Trans. Inf. Theory PGIT 2-4, 63–67 (1953/54).

G. H. Watson, S. K. Watson, “Detection of unusual events in intermittent non-Gaussian images using multiresolution background models,” Opt. Eng. 35, 3159–3171 (1996).

[CrossRef]

D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).

[CrossRef]
[PubMed]

J. J. Heine, “Multiresolution statistical analysis of high resolution digitized mammograms and other gray scaled images,” Ph.D. dissertation (University of South Florida, Tampa, Fla., 1996).

K. C. Chou, S. Golden, A. S. Willsky, “Modeling and estimation of multiscale stochastic processes,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing ’91 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1991), pp. 1709–1712.

V. V. Digalakis, K. C. Chou, “Maximum likelihood identification of multiscale stochastic models using the wavelet transform and the EM algorithm,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing ’93 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1993), pp. 93–96.

L. Andersson, N. Hall, B. Jawerth, G. Peters, “Wavelets on closed subsets of the real line,” in Recent Advances in Wavelet Analysis, L. L. Schumaker, G. Webb, eds. (Academic, Boston, Mass., 1994).

I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1992).

R. Bracewell, “The Fourier Transform and Its Applications,” 2nd ed. (McGraw-Hill, New York, 1986).

N. L. Johnson, S. Kotz, Continuous Univariant Distributions, 2nd ed. (Wiley, New York, 1995), Vol. 2.

C. W. Helstrom, Probability and Stochastic Processes for Engineers, 2nd ed. (Macmillan, New York, 1991).

D. M. Titterington, A. F. M. Smith, U. E. Makov, Chichester, Statistical Analysis of Finite Mixture Distributions (Wiley, New York, 1985).

G. Wornell, Signal Processing with Fractals: A Wavelet-Based Approach (Prentice-Hall, Englewood Cliffs, N.J., 1996).