Abstract

In light-emitting devices based on thin-film technology, light waves that are partially or totally reflected at interfaces between different materials interfere and influence the angular distribution of the emitted light. For an electrical dipole transition, the radiation pattern is equivalent to that of an electrical dipole antenna. New theoretical expressions are provided for the radiation, discriminating for polarization, emission angle, absorption, and transmission; and the numerical calculation of discrete modes, narrow modes, and evanescent waves near absorbing media is discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adachi, Y. Hamada, T. Wakimoto, “Progress in organic multilayer electroluminescent device,” in Electroluminescent Materials, Devices, and Large-Screen Displays, E. M. Conwell, M. Stolka, M. Miller, eds., Proc. SPIE1910, 212–221 (1993).
    [CrossRef]
  2. T. Nakayama, Y. Itoh, A. Kakuta, “Organic photo- and electroluminescent devices with double mirrors,” Appl. Phys. Lett. 63, 594–595 (1993).
    [CrossRef]
  3. N. E. Hunt, E. F. Schubert, R. Logan, G. Zydzik, “Enhanced spectral power density and reduced linewidth at 1.3 µm in an InGaAsP quantum well resonant-cavity light emitting diode,” Appl. Phys. Lett. 61, 2287–2289 (1992).
    [CrossRef]
  4. H. De Neve, J. Blondelle, “Resonant cavity LED’s,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 333–342.
  5. N. A. Vlasenko, S. A. Zynyo, A. Pukhlii, “Investigation of interference effects in thin electroluminescent ZnS-Mn films,” Opt. Spectrosc. 28, 66–71 (1970).
  6. R. H. Mauch, K. A. Neyts, H.-W. Schock, “Optical behaviour of electroluminescent devices,” in Proceedings of the 4th Workshop on Electroluminescence, Proceedings in Physics 38, S. Shionoya, H. Kobayashi, eds. (Springer-Verlag, Berlin, 1989), pp. 291–295.
  7. G. O. Mueller, R. Mach, E. Alinsog, H. Lee, D. Harrison, “Microcavity effects in thin film electroluminescence,” in Proceedings of Inorganic and Organic Electroluminescence/EL 96 Berlin, R. H. Mauch, H.-E. Gumlich, eds. (Wissenschaft und Technik Verlag, Berlin, 1996), pp. 399–402.
  8. R. Holm, S. McKnight, E. Palik, W. Lukosz, “Interference effects in luminescence studies of thin films,” Appl. Opt. 21, 2512–2519 (1982).
    [CrossRef] [PubMed]
  9. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface,” J. Opt. Soc. Am. 67, 1607–1619 (1977).
    [CrossRef]
  10. W. Lukosz, R. E. Kunz, “Changes in fluorescence lifetimes induced by variation of the radiating molecules’ optical environment,” Opt. Commun. 31, 42–46 (1979).
    [CrossRef]
  11. W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22, 3030–3038 (1980).
    [CrossRef]
  12. W. Lukosz, “Light emission by multipole sources in thin layers,” J. Opt. Soc. Am. 71, 744–754 (1981).
    [CrossRef]
  13. F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
    [CrossRef] [PubMed]
  14. G. Bjork, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
    [CrossRef] [PubMed]
  15. S.-T. Ho, D. Chu, J.-P. Zhang, M.-K. Chin, “Dielectric photonic wells and wires of spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), Chap. 10.
  16. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972).
  17. H. Rigneault, C. Amra, E. Pelletier, F. Flory, M. Cathelinaud, L. Roux, “Dielectric thin films for microcavity applications,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, 1996), pp. 427–442.
  18. S. Brorson, P. Skovgaard, “Optical mode density and spontaneous emission in microcavities,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), Chap. 2.
  19. K. Neyts, “Cavity effects in thin film phosphors based on ZnS,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 397–406.
  20. R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
    [CrossRef]
  21. K. Neyts, “Thin film microcavities for display applications,” in Conference Record of the 17th International Display Research Conference, J. Morreale, ed. (Society for Information Display, Santa Ana, Calif., 1997), pp. 421–424.

1993

T. Nakayama, Y. Itoh, A. Kakuta, “Organic photo- and electroluminescent devices with double mirrors,” Appl. Phys. Lett. 63, 594–595 (1993).
[CrossRef]

1992

N. E. Hunt, E. F. Schubert, R. Logan, G. Zydzik, “Enhanced spectral power density and reduced linewidth at 1.3 µm in an InGaAsP quantum well resonant-cavity light emitting diode,” Appl. Phys. Lett. 61, 2287–2289 (1992).
[CrossRef]

1991

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef] [PubMed]

G. Bjork, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

1982

1981

1980

W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22, 3030–3038 (1980).
[CrossRef]

1979

W. Lukosz, R. E. Kunz, “Changes in fluorescence lifetimes induced by variation of the radiating molecules’ optical environment,” Opt. Commun. 31, 42–46 (1979).
[CrossRef]

1977

1974

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

1970

N. A. Vlasenko, S. A. Zynyo, A. Pukhlii, “Investigation of interference effects in thin electroluminescent ZnS-Mn films,” Opt. Spectrosc. 28, 66–71 (1970).

Adachi, C.

S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adachi, Y. Hamada, T. Wakimoto, “Progress in organic multilayer electroluminescent device,” in Electroluminescent Materials, Devices, and Large-Screen Displays, E. M. Conwell, M. Stolka, M. Miller, eds., Proc. SPIE1910, 212–221 (1993).
[CrossRef]

Alinsog, E.

G. O. Mueller, R. Mach, E. Alinsog, H. Lee, D. Harrison, “Microcavity effects in thin film electroluminescence,” in Proceedings of Inorganic and Organic Electroluminescence/EL 96 Berlin, R. H. Mauch, H.-E. Gumlich, eds. (Wissenschaft und Technik Verlag, Berlin, 1996), pp. 399–402.

Amra, C.

H. Rigneault, C. Amra, E. Pelletier, F. Flory, M. Cathelinaud, L. Roux, “Dielectric thin films for microcavity applications,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, 1996), pp. 427–442.

Bjork, G.

G. Bjork, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

Blondelle, J.

H. De Neve, J. Blondelle, “Resonant cavity LED’s,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 333–342.

Brorson, S.

S. Brorson, P. Skovgaard, “Optical mode density and spontaneous emission in microcavities,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), Chap. 2.

Cathelinaud, M.

H. Rigneault, C. Amra, E. Pelletier, F. Flory, M. Cathelinaud, L. Roux, “Dielectric thin films for microcavity applications,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, 1996), pp. 427–442.

Chance, R. R.

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

Chin, M.-K.

S.-T. Ho, D. Chu, J.-P. Zhang, M.-K. Chin, “Dielectric photonic wells and wires of spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), Chap. 10.

Chu, D.

S.-T. Ho, D. Chu, J.-P. Zhang, M.-K. Chin, “Dielectric photonic wells and wires of spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), Chap. 10.

Crescentini, L.

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef] [PubMed]

De Martini, F.

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef] [PubMed]

De Neve, H.

H. De Neve, J. Blondelle, “Resonant cavity LED’s,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 333–342.

Era, M.

S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adachi, Y. Hamada, T. Wakimoto, “Progress in organic multilayer electroluminescent device,” in Electroluminescent Materials, Devices, and Large-Screen Displays, E. M. Conwell, M. Stolka, M. Miller, eds., Proc. SPIE1910, 212–221 (1993).
[CrossRef]

Flory, F.

H. Rigneault, C. Amra, E. Pelletier, F. Flory, M. Cathelinaud, L. Roux, “Dielectric thin films for microcavity applications,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, 1996), pp. 427–442.

Hamada, Y.

S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adachi, Y. Hamada, T. Wakimoto, “Progress in organic multilayer electroluminescent device,” in Electroluminescent Materials, Devices, and Large-Screen Displays, E. M. Conwell, M. Stolka, M. Miller, eds., Proc. SPIE1910, 212–221 (1993).
[CrossRef]

Harrison, D.

G. O. Mueller, R. Mach, E. Alinsog, H. Lee, D. Harrison, “Microcavity effects in thin film electroluminescence,” in Proceedings of Inorganic and Organic Electroluminescence/EL 96 Berlin, R. H. Mauch, H.-E. Gumlich, eds. (Wissenschaft und Technik Verlag, Berlin, 1996), pp. 399–402.

Ho, S.-T.

S.-T. Ho, D. Chu, J.-P. Zhang, M.-K. Chin, “Dielectric photonic wells and wires of spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), Chap. 10.

Holm, R.

Hunt, N. E.

N. E. Hunt, E. F. Schubert, R. Logan, G. Zydzik, “Enhanced spectral power density and reduced linewidth at 1.3 µm in an InGaAsP quantum well resonant-cavity light emitting diode,” Appl. Phys. Lett. 61, 2287–2289 (1992).
[CrossRef]

Igeta, K.

G. Bjork, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

Itoh, Y.

T. Nakayama, Y. Itoh, A. Kakuta, “Organic photo- and electroluminescent devices with double mirrors,” Appl. Phys. Lett. 63, 594–595 (1993).
[CrossRef]

Kakuta, A.

T. Nakayama, Y. Itoh, A. Kakuta, “Organic photo- and electroluminescent devices with double mirrors,” Appl. Phys. Lett. 63, 594–595 (1993).
[CrossRef]

Kunz, R. E.

W. Lukosz, R. E. Kunz, “Changes in fluorescence lifetimes induced by variation of the radiating molecules’ optical environment,” Opt. Commun. 31, 42–46 (1979).
[CrossRef]

W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface,” J. Opt. Soc. Am. 67, 1607–1619 (1977).
[CrossRef]

Lee, H.

G. O. Mueller, R. Mach, E. Alinsog, H. Lee, D. Harrison, “Microcavity effects in thin film electroluminescence,” in Proceedings of Inorganic and Organic Electroluminescence/EL 96 Berlin, R. H. Mauch, H.-E. Gumlich, eds. (Wissenschaft und Technik Verlag, Berlin, 1996), pp. 399–402.

Logan, R.

N. E. Hunt, E. F. Schubert, R. Logan, G. Zydzik, “Enhanced spectral power density and reduced linewidth at 1.3 µm in an InGaAsP quantum well resonant-cavity light emitting diode,” Appl. Phys. Lett. 61, 2287–2289 (1992).
[CrossRef]

Loudon, R.

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef] [PubMed]

Lukosz, W.

R. Holm, S. McKnight, E. Palik, W. Lukosz, “Interference effects in luminescence studies of thin films,” Appl. Opt. 21, 2512–2519 (1982).
[CrossRef] [PubMed]

W. Lukosz, “Light emission by multipole sources in thin layers,” J. Opt. Soc. Am. 71, 744–754 (1981).
[CrossRef]

W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22, 3030–3038 (1980).
[CrossRef]

W. Lukosz, R. E. Kunz, “Changes in fluorescence lifetimes induced by variation of the radiating molecules’ optical environment,” Opt. Commun. 31, 42–46 (1979).
[CrossRef]

W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface,” J. Opt. Soc. Am. 67, 1607–1619 (1977).
[CrossRef]

Mach, R.

G. O. Mueller, R. Mach, E. Alinsog, H. Lee, D. Harrison, “Microcavity effects in thin film electroluminescence,” in Proceedings of Inorganic and Organic Electroluminescence/EL 96 Berlin, R. H. Mauch, H.-E. Gumlich, eds. (Wissenschaft und Technik Verlag, Berlin, 1996), pp. 399–402.

Machida, S.

G. Bjork, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

Marcuse, D.

D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972).

Marrocco, M.

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef] [PubMed]

Mataloni, P.

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef] [PubMed]

Mauch, R. H.

R. H. Mauch, K. A. Neyts, H.-W. Schock, “Optical behaviour of electroluminescent devices,” in Proceedings of the 4th Workshop on Electroluminescence, Proceedings in Physics 38, S. Shionoya, H. Kobayashi, eds. (Springer-Verlag, Berlin, 1989), pp. 291–295.

McKnight, S.

Mueller, G. O.

G. O. Mueller, R. Mach, E. Alinsog, H. Lee, D. Harrison, “Microcavity effects in thin film electroluminescence,” in Proceedings of Inorganic and Organic Electroluminescence/EL 96 Berlin, R. H. Mauch, H.-E. Gumlich, eds. (Wissenschaft und Technik Verlag, Berlin, 1996), pp. 399–402.

Nakayama, T.

T. Nakayama, Y. Itoh, A. Kakuta, “Organic photo- and electroluminescent devices with double mirrors,” Appl. Phys. Lett. 63, 594–595 (1993).
[CrossRef]

Neyts, K.

K. Neyts, “Cavity effects in thin film phosphors based on ZnS,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 397–406.

K. Neyts, “Thin film microcavities for display applications,” in Conference Record of the 17th International Display Research Conference, J. Morreale, ed. (Society for Information Display, Santa Ana, Calif., 1997), pp. 421–424.

Neyts, K. A.

R. H. Mauch, K. A. Neyts, H.-W. Schock, “Optical behaviour of electroluminescent devices,” in Proceedings of the 4th Workshop on Electroluminescence, Proceedings in Physics 38, S. Shionoya, H. Kobayashi, eds. (Springer-Verlag, Berlin, 1989), pp. 291–295.

Palik, E.

Pelletier, E.

H. Rigneault, C. Amra, E. Pelletier, F. Flory, M. Cathelinaud, L. Roux, “Dielectric thin films for microcavity applications,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, 1996), pp. 427–442.

Prock, A.

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

Pukhlii, A.

N. A. Vlasenko, S. A. Zynyo, A. Pukhlii, “Investigation of interference effects in thin electroluminescent ZnS-Mn films,” Opt. Spectrosc. 28, 66–71 (1970).

Rigneault, H.

H. Rigneault, C. Amra, E. Pelletier, F. Flory, M. Cathelinaud, L. Roux, “Dielectric thin films for microcavity applications,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, 1996), pp. 427–442.

Roux, L.

H. Rigneault, C. Amra, E. Pelletier, F. Flory, M. Cathelinaud, L. Roux, “Dielectric thin films for microcavity applications,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, 1996), pp. 427–442.

Saito, S.

S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adachi, Y. Hamada, T. Wakimoto, “Progress in organic multilayer electroluminescent device,” in Electroluminescent Materials, Devices, and Large-Screen Displays, E. M. Conwell, M. Stolka, M. Miller, eds., Proc. SPIE1910, 212–221 (1993).
[CrossRef]

Schock, H.-W.

R. H. Mauch, K. A. Neyts, H.-W. Schock, “Optical behaviour of electroluminescent devices,” in Proceedings of the 4th Workshop on Electroluminescence, Proceedings in Physics 38, S. Shionoya, H. Kobayashi, eds. (Springer-Verlag, Berlin, 1989), pp. 291–295.

Schubert, E. F.

N. E. Hunt, E. F. Schubert, R. Logan, G. Zydzik, “Enhanced spectral power density and reduced linewidth at 1.3 µm in an InGaAsP quantum well resonant-cavity light emitting diode,” Appl. Phys. Lett. 61, 2287–2289 (1992).
[CrossRef]

Silbey, R.

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

Skovgaard, P.

S. Brorson, P. Skovgaard, “Optical mode density and spontaneous emission in microcavities,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), Chap. 2.

Takada, N.

S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adachi, Y. Hamada, T. Wakimoto, “Progress in organic multilayer electroluminescent device,” in Electroluminescent Materials, Devices, and Large-Screen Displays, E. M. Conwell, M. Stolka, M. Miller, eds., Proc. SPIE1910, 212–221 (1993).
[CrossRef]

Tsutsui, T.

S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adachi, Y. Hamada, T. Wakimoto, “Progress in organic multilayer electroluminescent device,” in Electroluminescent Materials, Devices, and Large-Screen Displays, E. M. Conwell, M. Stolka, M. Miller, eds., Proc. SPIE1910, 212–221 (1993).
[CrossRef]

Vlasenko, N. A.

N. A. Vlasenko, S. A. Zynyo, A. Pukhlii, “Investigation of interference effects in thin electroluminescent ZnS-Mn films,” Opt. Spectrosc. 28, 66–71 (1970).

Wakimoto, T.

S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adachi, Y. Hamada, T. Wakimoto, “Progress in organic multilayer electroluminescent device,” in Electroluminescent Materials, Devices, and Large-Screen Displays, E. M. Conwell, M. Stolka, M. Miller, eds., Proc. SPIE1910, 212–221 (1993).
[CrossRef]

Yamamoto, Y.

G. Bjork, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

Zhang, J.-P.

S.-T. Ho, D. Chu, J.-P. Zhang, M.-K. Chin, “Dielectric photonic wells and wires of spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), Chap. 10.

Zydzik, G.

N. E. Hunt, E. F. Schubert, R. Logan, G. Zydzik, “Enhanced spectral power density and reduced linewidth at 1.3 µm in an InGaAsP quantum well resonant-cavity light emitting diode,” Appl. Phys. Lett. 61, 2287–2289 (1992).
[CrossRef]

Zynyo, S. A.

N. A. Vlasenko, S. A. Zynyo, A. Pukhlii, “Investigation of interference effects in thin electroluminescent ZnS-Mn films,” Opt. Spectrosc. 28, 66–71 (1970).

Appl. Opt.

Appl. Phys. Lett.

T. Nakayama, Y. Itoh, A. Kakuta, “Organic photo- and electroluminescent devices with double mirrors,” Appl. Phys. Lett. 63, 594–595 (1993).
[CrossRef]

N. E. Hunt, E. F. Schubert, R. Logan, G. Zydzik, “Enhanced spectral power density and reduced linewidth at 1.3 µm in an InGaAsP quantum well resonant-cavity light emitting diode,” Appl. Phys. Lett. 61, 2287–2289 (1992).
[CrossRef]

J. Chem. Phys.

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

J. Opt. Soc. Am.

Opt. Commun.

W. Lukosz, R. E. Kunz, “Changes in fluorescence lifetimes induced by variation of the radiating molecules’ optical environment,” Opt. Commun. 31, 42–46 (1979).
[CrossRef]

Opt. Spectrosc.

N. A. Vlasenko, S. A. Zynyo, A. Pukhlii, “Investigation of interference effects in thin electroluminescent ZnS-Mn films,” Opt. Spectrosc. 28, 66–71 (1970).

Phys. Rev. A

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef] [PubMed]

G. Bjork, S. Machida, Y. Yamamoto, K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef] [PubMed]

Phys. Rev. B

W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22, 3030–3038 (1980).
[CrossRef]

Other

R. H. Mauch, K. A. Neyts, H.-W. Schock, “Optical behaviour of electroluminescent devices,” in Proceedings of the 4th Workshop on Electroluminescence, Proceedings in Physics 38, S. Shionoya, H. Kobayashi, eds. (Springer-Verlag, Berlin, 1989), pp. 291–295.

G. O. Mueller, R. Mach, E. Alinsog, H. Lee, D. Harrison, “Microcavity effects in thin film electroluminescence,” in Proceedings of Inorganic and Organic Electroluminescence/EL 96 Berlin, R. H. Mauch, H.-E. Gumlich, eds. (Wissenschaft und Technik Verlag, Berlin, 1996), pp. 399–402.

H. De Neve, J. Blondelle, “Resonant cavity LED’s,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 333–342.

S.-T. Ho, D. Chu, J.-P. Zhang, M.-K. Chin, “Dielectric photonic wells and wires of spontaneous emission coupling efficiency of microdisk and photonic-wire semiconductor lasers,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), Chap. 10.

D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972).

H. Rigneault, C. Amra, E. Pelletier, F. Flory, M. Cathelinaud, L. Roux, “Dielectric thin films for microcavity applications,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, 1996), pp. 427–442.

S. Brorson, P. Skovgaard, “Optical mode density and spontaneous emission in microcavities,” in Optical Processes in Microcavities, R. K. Chang, A. J. Campillo, eds. (World Scientific, Singapore, 1996), Chap. 2.

K. Neyts, “Cavity effects in thin film phosphors based on ZnS,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Studies Institute Series E (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 397–406.

K. Neyts, “Thin film microcavities for display applications,” in Conference Record of the 17th International Display Research Conference, J. Morreale, ed. (Society for Information Display, Santa Ana, Calif., 1997), pp. 421–424.

S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adachi, Y. Hamada, T. Wakimoto, “Progress in organic multilayer electroluminescent device,” in Electroluminescent Materials, Devices, and Large-Screen Displays, E. M. Conwell, M. Stolka, M. Miller, eds., Proc. SPIE1910, 212–221 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Structure of a light-emitting thin-film device. The emitting medium with index of refraction ne and thickness de is considered to be loss-free. The intermediate layers, labeled with an index i, have index of refraction ni and thickness di. The half-infinite media are labeled + and -. The amplitude reflection coefficients for a plane wave incident from ne on the multilayer structure in the +z and the -z direction are re,+ and re,-.

Fig. 2
Fig. 2

Sign convention for reflection coefficients in the case for TE and TM polarization.

Fig. 3
Fig. 3

The k vector of a plane wave has a contribution kz parallel to the z axis (perpendicular to the plane of the layers) and κ parallel to the xy plane. The angle α is the angle between the z axis and the k vector.

Fig. 4
Fig. 4

The radiation from the dipole antenna has contributions in the +z (K+) and the -z (K-) direction. Each contribution (for example, K+) can be further separated into a part that is absorbed (KA,+) by the intermediate layers and a part that is transmitted (KT,+) into the half-infinite medium in the +z direction. Only one interface is shown, but multiple layers are possible.

Fig. 5
Fig. 5

The emitting layer has a thickness de, and the radiating dipole antenna (or excited state with possible dipole transition) is located at a distance z- from the interface at the -z side of the layer and z+ from the interface at the +z side.

Fig. 6
Fig. 6

For wide-angle interference there is interference between directly emitted light and reflected light that have the same k vector, and the distance z- plays an important role. Multiple-beam interference takes place when the radiation is reflected back and forth between the two interfaces of the layer. The essential parameter here is the thickness of the layer.

Fig. 7
Fig. 7

Simulation of the power density radiated by a randomly oriented dipole antenna per unit solid angle in the perpendicular direction in medium n+, P+TM(α+=0)+P+TE(α+=0), for the system Al/ZnS/air as a function of the scaled thickness of the ZnS layer, nede/λ, and the relative position z-/de of the dipole antenna in the layer. The total emission of the dipole antenna in an infinite ZnS medium is scaled to unity. The indices of refraction, n-=1+6j (Al), ne=2.3 (ZnS), and n+=1 (air), are roughly valid for wavelengths near 600 nm. The solid curves are obtained by interpolation from a 40×100 data matrix.

Fig. 8
Fig. 8

Simulation of the power 0k+2K+,T(κ)dκ2 radiated by a randomly oriented dipole antenna into medium n+ for the system Al/ZnS/air. As in Fig. 7, the power in an infinite medium is the reference, and the result is shown as a function of the scaled thickness nede/λ and the relative position z-/de of the dipole antenna. The same indices of refraction are used as those in Fig. 7. The result also represents the useful emission Eappl for a dipole transition dominated by nonradiative decay.

Fig. 9
Fig. 9

Simulation of the total power F=0K(κ)dκ2 radiated by a randomly oriented dipole antenna. As in Fig. 7, the power in an infinite medium is the reference, and the result is shown as a function of the scaled thickness nede/λ and the relative position z-/de of the radiating dipole antenna. The result also represents the total emission for dipole transitions dominated by nonradiative decay or the increase in the radiative decay rate.

Fig. 10
Fig. 10

Simulation of the emission into medium n+ of a dipole transition with mainly radiative decay, Eappl=(1/F)0k+2K+,T(κ)dκ2, according to Eq. (37). As in Fig. 7, the result is shown as a function of the scaled thickness nede/λ and the relative position z-/de of the radiating dipole antenna.

Fig. 11
Fig. 11

Simulation of the angular dependence PTM(αe)/F and PTE(αe)/F of the radiation per unit solid angle for a randomly oriented dipole antenna with only radiative decay. The structure of the layer is Al/ZnS/air, with nede/λ=nez-/λ=0.73, corresponding to the maximum value of Eappl=0.38 in Fig. 10. For αe<90° there is only emission below the critical angle; for αe>90° the radiation is absorbed in the mirror.

Equations (59)

Equations on this page are rendered with MathJax. Learn more.

ki=2πni/λ.
E¯±TM(x¯)=[(kx,i2+ky,i2)1¯zkz,i(kx,i1¯x+ky,i1¯y)]×exp[j(kx,ix+ky,iy±kz,iz)],
E¯±TE(x¯)=(-ky,i1¯x+kx,i1¯y)exp[j(kx,ix+ky,iy±kz,iz)],
kz,i=(ki2-kx,i2-ky,i2)1/2.
κ=(kx,i2+ky,i2)1/2;
kz,i=(ki2-κ2)1/2.
κ=ki sin αi,
ri,i±1TM=kz,ini2-kz,i±1ni±12kz,ini2+kz,i±1ni±12,ri,i±1TE=kz,i-kz,i±1kz,i+kz,i±1.
ri,j=ri,i±1+ri±1,j exp(2jkz,i+1di+1)1+ri,i±1ri±1,j exp(2jkz,i+1di+1),
ti,j=ti,i±1ti±1,j exp(jkz,i+1di+1)1+ri,i±1ri±1,j exp(2jkz,i+1di+1).
Re,±TM,TE=|re,±TM,TE|2,
Te,±TM=|te,±TM|2 ne2n±2kz,±|kz,e|,Te,±TE=|te,±TE|2 kz,±|kz,e|
forIm(kz,±)=0,
Te,±TM,TE=0forIm(kz,±)0.
Le=νke36ne20p02.
F=0K(κ)dκ2,
K=KTM+KTE=K++K-=KA+KT,
K+=K+,A+K+,T=K+TE+K+TM.
P+(α+)2π sin α+ dα+=K+,T(κ)dκ2,
P+(α+)=k+2 cos α+πK+,T(k+ sin α+).
KTM=34Reκ2ke3kz,e(1+a+TM)(1+a-TM)1-aTM,KTE=0;
KTM=38Rekz,eke3(1-a+TM)(1-a-TM)1-aTM,
KTE=38Re1kekz,e(1+a+TE)(1+a-TE)1-aTE.
a+TM,TE=re,+TM,TE exp(2jkz,ez+),
a-TM,TE=re,-TM,TE exp(2jkz,ez-),
aTM,TE=a+TM,TEa-TM,TE=re,+TM,TEre,+TM,TE exp(2jkz,ede).
Kβ=const Reβ2ke3kz,e(1±a+)(1±a-)1-a
KθTM=KTM cos2 θ+KTM sin2 θ,
KθTE=KTE cos2 θ+KTE sin2 θ.
KRNDTM=13KTM+23KTM,KRNDTE=13KTE+23KTE.
Re(1±a+)(1±a-)1-a=12|1±a-|2|1-a|2(1-|a+|2)+12|1±a+|2|1-a|2(1-|a-|2);
K+β=const β2ke3kz,e12|1±a-|2|1-a|2(1-Re,+),
K+,Tβ=const β2ke3kz,e12|1±a-|2|1-a|2Te,+,
K+,Aβ=const β2ke3kz,e12|1±a-|2|1-a|2(1-Re,+-Te,+).
PTM(αe)=38πsin2 αe,PRNDTM(αe)=18π,
PRND(αe)=14π.
±Im(1±a+)(1±a-)1-a=|1±a-|2|1-a|2Im(a+)+|1±a+|2|1-a|2Im(a-),
K+β=const |β|2ke3|kz,e|12|1±a-|2|1-a|22 Im(a+),
K+,Tβ=const |β|2ke3|kz,e|12|1+a-|2|1-a|2Te,+ exp(2jkz,ez+),
K+,Aβ=const |β|2ke3|kz,e|12|1±a-|2|1-a|2×[2 Im(a+)-Te,+ exp(2jkz,ez+)].
Γinf=Γnr+Γr,Γcav=Γnr+FΓr,
ηrad,inf=ΓrΓnr+Γr,ηrad,cav=FΓrΓnr+FΓr.
Etot=ηrad,cavηrad,inf=Γnr+ΓrΓnr+FΓrF.
Eappl=Γnr+ΓrΓnr+FΓrκ12κ22K(κ)dκ2.
Pdipole(α)=Γnr+ΓrΓnr+FΓrP(α).
- Re(1±a+)(1±a-)1-adϕ=2π[1+Re(a+)].
κm2-κm2+Kβ(κ)dκ2=2π const βm2ke3(kz,e)m1+Re(a+,m)dϕdκ2.
1|1-a|2=11+|a|2-2|a|cos ϕ.
κ12κ22Kβ(κ)dκ2const β2ke3kz,eκ22-κ12ϕ2-ϕ1×2 Re[(1±a+)(1±a-)(1-a*)]1-|a|2×arctan1+|a|1-|a|tan ϕ22-arctan1+|a|1-|a|tan ϕ12,
κ,kz,ijκ-ki22κ,
r±TMn±2-ne2n±2+ne2,r±TE0.
κmin2KTM(κ)dκ238ke3Im(r+TM)exp(-2κminz+)z+3×(1+2κminz++2κmin2z+2)+Im(r-TM)exp(-2κminz-)z-3×(1+2κminz-2κmin2z-2).
FTM381ke3z+3Im n+2-ne2n+2+ne2,
FTM3161ke3z+3Im n+2-ne2n+2+ne2,
FRND141ke3z+3Im n+2-ne2n+2+ne2.
Kβ=const β2ke3kz1-Re,+Re,-|1-a|2.
K+β=const β2ke3kz121+Re,-|1-a|2(1-Re,+),
K+,Tβ=const β2ke3kz121+Re,-|1-a|2Te,+.
κm2-κm2+Kβ(κm)dκ2=2π const βm2ke3(kz,e)m1|dϕ/dκ2|.

Metrics