M. A. Kutay, H. M. Ozaktas, O. Arikan, L. Onural, “Optimal filtering in fractional Fourier domains,” IEEE Trans. Signal Process. 45, 1129–1143 (1997).

[CrossRef]

M. F. Erden, H. M. Ozaktas, A. Sahin, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).

[CrossRef]

M. R. Banham, A. K. Katsaggelos, “Digital image restoration,” IEEE Trans. Signal Process. 14(2), 24–41 (1997).

[CrossRef]

M. R. Banham, A. K. Katsaggelos, “Spatially adaptive wavelet-based multiscale image restoration,” IEEE Trans. Image Process. 5, 619–634 (1996).

[CrossRef]
[PubMed]

H. M. Ozaktas, N. Erkaya, M. A. Kutay, “Effect of fractional Fourier transformation on time-frequency distributions belonging to the Cohen class,” IEEE Signal Process. Lett. 3(2), 40–41 (1996).

[CrossRef]

T. Alieva, F. Agullo-Lopez, “Optical wave propagation of fractal fields,” Opt. Commun. 125, 267–274 (1996).

[CrossRef]

H. M. Ozaktas, O. Arikan, M. A. Kutay, G. Bozdaǧi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

A. Sahin, H. M. Ozaktas, D. Mendlovic, “Optical implementation of the two-dimensional fractional Fourier transform with different orders in two dimensions,” Opt. Commun. 120, 134–138 (1995).

[CrossRef]

H. M. Ozaktas, O. Aytür, “Fractional Fourier domains,” Signal Process. 46, 119–124 (1995).

[CrossRef]

H. M. Ozaktas, D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995).

[CrossRef]

J. Wood, D. T. Barry, “Radon transformation of time-frequency distributions for analysis of multicomponent signals,” IEEE Trans. Signal Process. 42, 3166–3177 (1994).

[CrossRef]

P. Pellat-Finet, “Fresnel diffraction and the fractional-order Fourier transform,” Opt. Lett. 19, 1388–1390 (1994).

[CrossRef]
[PubMed]

H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators,” Opt. Lett. 19, 1678–1680 (1994).

[CrossRef]
[PubMed]

H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994).

[CrossRef]

A. W. Lohmann, B. H. Soffer, “Relationships between the Radon-Wigner and fractional Fourier transforms,” J. Opt. Soc. Am. A 11, 1798–1801 (1994).

[CrossRef]

L. M. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994).

[CrossRef]

P. Pellat-Finet, G. Bonnet, “Fractional-order Fourier transform and Fourier optics,” Opt. Commun. 111, 141–154 (1994).

[CrossRef]

L. M. Bernardo, O. D. D. Soares, “Fractional Fourier transforms and optical systems,” Opt. Commun. 110, 517–522 (1994).

[CrossRef]

T. Alieva, V. Lopez, F. Agullo-Lopez, L. B. Almeida, “The angular Fourier transform in optical propagation problems,” J. Mod. Opt. 41, 1037–1044 (1994).

[CrossRef]

H. M. Ozaktas, D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993).

[CrossRef]

J. Zhang, “The mean field theory in EM procedures for blind Markov random field image restoration,” IEEE Trans. Image Process. 2, 27–40 (1993).

[CrossRef]
[PubMed]

D. T. Smithey, M. Beck, M. G. Raymer, A. Faridanil, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transformations and their optical implementation: part I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993).

[CrossRef]

A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993).

[CrossRef]

H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transformations and their optical implementation: part II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993).

[CrossRef]

A. C. McBride, F. H. Kerr, “On Namias’s fractional Fourier transform,” IMA J. Appl. Math. 39, 159–175 (1987).

[CrossRef]

V. Namias, “The fractional Fourier transform and its application in quantum mechanics,” J. Inst. Math. Appl. 25, 241–245 (1980).

[CrossRef]

E. U. Condon, “Immersion of the Fourier transform in a continuous group of functional transformations,” Proc. Natl. Acad. Sci. USA 23, 158–164 (1937).

[CrossRef]
[PubMed]

T. Alieva, F. Agullo-Lopez, “Optical wave propagation of fractal fields,” Opt. Commun. 125, 267–274 (1996).

[CrossRef]

T. Alieva, V. Lopez, F. Agullo-Lopez, L. B. Almeida, “The angular Fourier transform in optical propagation problems,” J. Mod. Opt. 41, 1037–1044 (1994).

[CrossRef]

T. Alieva, F. Agullo-Lopez, “Optical wave propagation of fractal fields,” Opt. Commun. 125, 267–274 (1996).

[CrossRef]

T. Alieva, V. Lopez, F. Agullo-Lopez, L. B. Almeida, “The angular Fourier transform in optical propagation problems,” J. Mod. Opt. 41, 1037–1044 (1994).

[CrossRef]

T. Alieva, V. Lopez, F. Agullo-Lopez, L. B. Almeida, “The angular Fourier transform in optical propagation problems,” J. Mod. Opt. 41, 1037–1044 (1994).

[CrossRef]

L. M. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994).

[CrossRef]

B. D. O. Anderson, J. B. Moore, Optimal Filtering (Prentice-Hall, New York, 1979).

M. A. Kutay, H. M. Ozaktas, O. Arikan, L. Onural, “Optimal filtering in fractional Fourier domains,” IEEE Trans. Signal Process. 45, 1129–1143 (1997).

[CrossRef]

H. M. Ozaktas, O. Arikan, M. A. Kutay, G. Bozdaǧi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

H. M. Ozaktas, O. Aytür, “Fractional Fourier domains,” Signal Process. 46, 119–124 (1995).

[CrossRef]

M. R. Banham, A. K. Katsaggelos, “Digital image restoration,” IEEE Trans. Signal Process. 14(2), 24–41 (1997).

[CrossRef]

M. R. Banham, A. K. Katsaggelos, “Spatially adaptive wavelet-based multiscale image restoration,” IEEE Trans. Image Process. 5, 619–634 (1996).

[CrossRef]
[PubMed]

J. Wood, D. T. Barry, “Radon transformation of time-frequency distributions for analysis of multicomponent signals,” IEEE Trans. Signal Process. 42, 3166–3177 (1994).

[CrossRef]

D. T. Smithey, M. Beck, M. G. Raymer, A. Faridanil, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

L. M. Bernardo, O. D. D. Soares, “Fractional Fourier transforms and optical systems,” Opt. Commun. 110, 517–522 (1994).

[CrossRef]

P. Pellat-Finet, G. Bonnet, “Fractional-order Fourier transform and Fourier optics,” Opt. Commun. 111, 141–154 (1994).

[CrossRef]

H. M. Ozaktas, O. Arikan, M. A. Kutay, G. Bozdaǧi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

E. U. Condon, “Immersion of the Fourier transform in a continuous group of functional transformations,” Proc. Natl. Acad. Sci. USA 23, 158–164 (1937).

[CrossRef]
[PubMed]

M. F. Erden, H. M. Ozaktas, A. Sahin, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).

[CrossRef]

H. M. Ozaktas, N. Erkaya, M. A. Kutay, “Effect of fractional Fourier transformation on time-frequency distributions belonging to the Cohen class,” IEEE Signal Process. Lett. 3(2), 40–41 (1996).

[CrossRef]

D. T. Smithey, M. Beck, M. G. Raymer, A. Faridanil, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Wetterling, Numerical Recipes in Pascal (Cambridge U. Press, Cambridge, 1989), pp. 574–579.

J. R. Fonollosa, C. L. Nikias, “A new positive time-frequency distribution,” in Proceedings of the IEEE International Conference on Acoustic Speech and Signal Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. IV-301–IV-304.

A. Jazwinski, Stochastic Processes and Filtering Theory (Academic, New York, 1970).

M. R. Banham, A. K. Katsaggelos, “Digital image restoration,” IEEE Trans. Signal Process. 14(2), 24–41 (1997).

[CrossRef]

M. R. Banham, A. K. Katsaggelos, “Spatially adaptive wavelet-based multiscale image restoration,” IEEE Trans. Image Process. 5, 619–634 (1996).

[CrossRef]
[PubMed]

A. C. McBride, F. H. Kerr, “On Namias’s fractional Fourier transform,” IMA J. Appl. Math. 39, 159–175 (1987).

[CrossRef]

M. A. Kutay, H. M. Ozaktas, O. Arikan, L. Onural, “Optimal filtering in fractional Fourier domains,” IEEE Trans. Signal Process. 45, 1129–1143 (1997).

[CrossRef]

H. M. Ozaktas, N. Erkaya, M. A. Kutay, “Effect of fractional Fourier transformation on time-frequency distributions belonging to the Cohen class,” IEEE Signal Process. Lett. 3(2), 40–41 (1996).

[CrossRef]

H. M. Ozaktas, O. Arikan, M. A. Kutay, G. Bozdaǧi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

F. L. Lewis, Optimal Estimation (Wiley, New York, 1986).

J. S. Lim, Two-Dimensional Signal and Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1990).

T. Alieva, V. Lopez, F. Agullo-Lopez, L. B. Almeida, “The angular Fourier transform in optical propagation problems,” J. Mod. Opt. 41, 1037–1044 (1994).

[CrossRef]

A. C. McBride, F. H. Kerr, “On Namias’s fractional Fourier transform,” IMA J. Appl. Math. 39, 159–175 (1987).

[CrossRef]

A. Sahin, H. M. Ozaktas, D. Mendlovic, “Optical implementation of the two-dimensional fractional Fourier transform with different orders in two dimensions,” Opt. Commun. 120, 134–138 (1995).

[CrossRef]

H. M. Ozaktas, D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995).

[CrossRef]

H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators,” Opt. Lett. 19, 1678–1680 (1994).

[CrossRef]
[PubMed]

H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994).

[CrossRef]

D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transformations and their optical implementation: part I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993).

[CrossRef]

H. M. Ozaktas, D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993).

[CrossRef]

H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transformations and their optical implementation: part II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993).

[CrossRef]

B. D. O. Anderson, J. B. Moore, Optimal Filtering (Prentice-Hall, New York, 1979).

V. Namias, “The fractional Fourier transform and its application in quantum mechanics,” J. Inst. Math. Appl. 25, 241–245 (1980).

[CrossRef]

J. R. Fonollosa, C. L. Nikias, “A new positive time-frequency distribution,” in Proceedings of the IEEE International Conference on Acoustic Speech and Signal Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. IV-301–IV-304.

M. A. Kutay, H. M. Ozaktas, O. Arikan, L. Onural, “Optimal filtering in fractional Fourier domains,” IEEE Trans. Signal Process. 45, 1129–1143 (1997).

[CrossRef]

H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994).

[CrossRef]

M. A. Kutay, H. M. Ozaktas, O. Arikan, L. Onural, “Optimal filtering in fractional Fourier domains,” IEEE Trans. Signal Process. 45, 1129–1143 (1997).

[CrossRef]

M. F. Erden, H. M. Ozaktas, A. Sahin, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).

[CrossRef]

H. M. Ozaktas, N. Erkaya, M. A. Kutay, “Effect of fractional Fourier transformation on time-frequency distributions belonging to the Cohen class,” IEEE Signal Process. Lett. 3(2), 40–41 (1996).

[CrossRef]

H. M. Ozaktas, O. Arikan, M. A. Kutay, G. Bozdaǧi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

A. Sahin, H. M. Ozaktas, D. Mendlovic, “Optical implementation of the two-dimensional fractional Fourier transform with different orders in two dimensions,” Opt. Commun. 120, 134–138 (1995).

[CrossRef]

H. M. Ozaktas, D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995).

[CrossRef]

H. M. Ozaktas, O. Aytür, “Fractional Fourier domains,” Signal Process. 46, 119–124 (1995).

[CrossRef]

H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators,” Opt. Lett. 19, 1678–1680 (1994).

[CrossRef]
[PubMed]

H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994).

[CrossRef]

D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transformations and their optical implementation: part I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993).

[CrossRef]

H. M. Ozaktas, D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993).

[CrossRef]

H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transformations and their optical implementation: part II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993).

[CrossRef]

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Wetterling, Numerical Recipes in Pascal (Cambridge U. Press, Cambridge, 1989), pp. 574–579.

D. T. Smithey, M. Beck, M. G. Raymer, A. Faridanil, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

M. F. Erden, H. M. Ozaktas, A. Sahin, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).

[CrossRef]

A. Sahin, H. M. Ozaktas, D. Mendlovic, “Optical implementation of the two-dimensional fractional Fourier transform with different orders in two dimensions,” Opt. Commun. 120, 134–138 (1995).

[CrossRef]

A. Sahin, “Two-dimensional fractional Fourier transformation and its optical implementation,” Master’s thesis (Bilkent University, Ankara, Turkey, 1996).

D. T. Smithey, M. Beck, M. G. Raymer, A. Faridanil, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

L. M. Bernardo, O. D. D. Soares, “Fractional Fourier transforms and optical systems,” Opt. Commun. 110, 517–522 (1994).

[CrossRef]

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Wetterling, Numerical Recipes in Pascal (Cambridge U. Press, Cambridge, 1989), pp. 574–579.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Wetterling, Numerical Recipes in Pascal (Cambridge U. Press, Cambridge, 1989), pp. 574–579.

J. Wood, D. T. Barry, “Radon transformation of time-frequency distributions for analysis of multicomponent signals,” IEEE Trans. Signal Process. 42, 3166–3177 (1994).

[CrossRef]

J. Zhang, “The mean field theory in EM procedures for blind Markov random field image restoration,” IEEE Trans. Image Process. 2, 27–40 (1993).

[CrossRef]
[PubMed]

H. M. Ozaktas, N. Erkaya, M. A. Kutay, “Effect of fractional Fourier transformation on time-frequency distributions belonging to the Cohen class,” IEEE Signal Process. Lett. 3(2), 40–41 (1996).

[CrossRef]

J. Zhang, “The mean field theory in EM procedures for blind Markov random field image restoration,” IEEE Trans. Image Process. 2, 27–40 (1993).

[CrossRef]
[PubMed]

M. R. Banham, A. K. Katsaggelos, “Spatially adaptive wavelet-based multiscale image restoration,” IEEE Trans. Image Process. 5, 619–634 (1996).

[CrossRef]
[PubMed]

M. R. Banham, A. K. Katsaggelos, “Digital image restoration,” IEEE Trans. Signal Process. 14(2), 24–41 (1997).

[CrossRef]

J. Wood, D. T. Barry, “Radon transformation of time-frequency distributions for analysis of multicomponent signals,” IEEE Trans. Signal Process. 42, 3166–3177 (1994).

[CrossRef]

M. A. Kutay, H. M. Ozaktas, O. Arikan, L. Onural, “Optimal filtering in fractional Fourier domains,” IEEE Trans. Signal Process. 45, 1129–1143 (1997).

[CrossRef]

H. M. Ozaktas, O. Arikan, M. A. Kutay, G. Bozdaǧi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).

[CrossRef]

L. M. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994).

[CrossRef]

A. C. McBride, F. H. Kerr, “On Namias’s fractional Fourier transform,” IMA J. Appl. Math. 39, 159–175 (1987).

[CrossRef]

V. Namias, “The fractional Fourier transform and its application in quantum mechanics,” J. Inst. Math. Appl. 25, 241–245 (1980).

[CrossRef]

T. Alieva, V. Lopez, F. Agullo-Lopez, L. B. Almeida, “The angular Fourier transform in optical propagation problems,” J. Mod. Opt. 41, 1037–1044 (1994).

[CrossRef]

H. M. Ozaktas, D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995).

[CrossRef]

H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994).

[CrossRef]

A. W. Lohmann, B. H. Soffer, “Relationships between the Radon-Wigner and fractional Fourier transforms,” J. Opt. Soc. Am. A 11, 1798–1801 (1994).

[CrossRef]

D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transformations and their optical implementation: part I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993).

[CrossRef]

A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993).

[CrossRef]

H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transformations and their optical implementation: part II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993).

[CrossRef]

T. Alieva, F. Agullo-Lopez, “Optical wave propagation of fractal fields,” Opt. Commun. 125, 267–274 (1996).

[CrossRef]

M. F. Erden, H. M. Ozaktas, A. Sahin, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).

[CrossRef]

P. Pellat-Finet, G. Bonnet, “Fractional-order Fourier transform and Fourier optics,” Opt. Commun. 111, 141–154 (1994).

[CrossRef]

L. M. Bernardo, O. D. D. Soares, “Fractional Fourier transforms and optical systems,” Opt. Commun. 110, 517–522 (1994).

[CrossRef]

H. M. Ozaktas, D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993).

[CrossRef]

A. Sahin, H. M. Ozaktas, D. Mendlovic, “Optical implementation of the two-dimensional fractional Fourier transform with different orders in two dimensions,” Opt. Commun. 120, 134–138 (1995).

[CrossRef]

D. T. Smithey, M. Beck, M. G. Raymer, A. Faridanil, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

E. U. Condon, “Immersion of the Fourier transform in a continuous group of functional transformations,” Proc. Natl. Acad. Sci. USA 23, 158–164 (1937).

[CrossRef]
[PubMed]

H. M. Ozaktas, O. Aytür, “Fractional Fourier domains,” Signal Process. 46, 119–124 (1995).

[CrossRef]

A. Sahin, “Two-dimensional fractional Fourier transformation and its optical implementation,” Master’s thesis (Bilkent University, Ankara, Turkey, 1996).

J. R. Fonollosa, C. L. Nikias, “A new positive time-frequency distribution,” in Proceedings of the IEEE International Conference on Acoustic Speech and Signal Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. IV-301–IV-304.

B. D. O. Anderson, J. B. Moore, Optimal Filtering (Prentice-Hall, New York, 1979).

A. Jazwinski, Stochastic Processes and Filtering Theory (Academic, New York, 1970).

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Wetterling, Numerical Recipes in Pascal (Cambridge U. Press, Cambridge, 1989), pp. 574–579.

J. S. Lim, Two-Dimensional Signal and Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1990).

F. L. Lewis, Optimal Estimation (Wiley, New York, 1986).