Abstract

We report the waveguiding properties of a new type of low-loss optical waveguide. The photonic crystal fiber can be engineered to support only the fundamental guided mode at every wavelength within the transparency window of silica. Experimentally, a robust single mode has been observed over a wavelength range from 337 nm to beyond 1550 nm (restricted only by available wavelength sources). By studying the number of guided modes for fibers with different parameters and the use of an effective index model, we are able to quantify the requirements for monomode operation. The requirements are independent of the scale of the fiber for sufficiently short wavelengths. Further support for the predictions of the effective index model is given by the variation of the spot size with wavelength.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., the special issues on Development and Applications of Materials Exhibiting Photonic Band Gaps, J. Opt. Soc. Am. B 10, 279–413 (1993); J. Mod. Opt. 41, special issue on “Photonic Band Structures,” (1994); Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996).
  2. A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996);J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
    [CrossRef] [PubMed]
  3. D. M. Atkin, P. St. J. Russell, T. A. Birks, P. J. Roberts, “Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure,” J. Mod. Opt. 43, 1035–1053 (1996);P. St. J. Russell, D. M. Atkin, T. A. Birks, P. J. Roberts, “Bound modes of two-dimensional photonic crystal waveguides,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996).
    [CrossRef]
  4. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
    [CrossRef]
  5. J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996); see also errata Opt. Lett. 22, 484–485 (1997).
    [CrossRef] [PubMed]
  6. T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  7. R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992); H. B. Lin, R. J. Tonucci, A. J. Campillo, “Observation of two-dimensional photonic band behavior in the visible,” Appl. Phys. Lett. 88, 2927–2929 (1996).
    [CrossRef] [PubMed]
  8. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  9. D. E. Aspnes, “Local-field effects and effective-medium theory: microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
    [CrossRef]
  10. W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, “Determination of core diameter and refractive-index difference of single-mode fibers by observation of the far-field pattern,” Microwaves Opt. Acoustics 1, 13–17 (1976).
    [CrossRef]

1997 (1)

1996 (3)

J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996); see also errata Opt. Lett. 22, 484–485 (1997).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996);J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
[CrossRef] [PubMed]

D. M. Atkin, P. St. J. Russell, T. A. Birks, P. J. Roberts, “Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure,” J. Mod. Opt. 43, 1035–1053 (1996);P. St. J. Russell, D. M. Atkin, T. A. Birks, P. J. Roberts, “Bound modes of two-dimensional photonic crystal waveguides,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996).
[CrossRef]

1995 (1)

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

1993 (1)

See, e.g., the special issues on Development and Applications of Materials Exhibiting Photonic Band Gaps, J. Opt. Soc. Am. B 10, 279–413 (1993); J. Mod. Opt. 41, special issue on “Photonic Band Structures,” (1994); Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996).

1992 (1)

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992); H. B. Lin, R. J. Tonucci, A. J. Campillo, “Observation of two-dimensional photonic band behavior in the visible,” Appl. Phys. Lett. 88, 2927–2929 (1996).
[CrossRef] [PubMed]

1982 (1)

D. E. Aspnes, “Local-field effects and effective-medium theory: microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[CrossRef]

1976 (1)

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, “Determination of core diameter and refractive-index difference of single-mode fibers by observation of the far-field pattern,” Microwaves Opt. Acoustics 1, 13–17 (1976).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, “Local-field effects and effective-medium theory: microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[CrossRef]

Atkin, D. M.

J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996); see also errata Opt. Lett. 22, 484–485 (1997).
[CrossRef] [PubMed]

D. M. Atkin, P. St. J. Russell, T. A. Birks, P. J. Roberts, “Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure,” J. Mod. Opt. 43, 1035–1053 (1996);P. St. J. Russell, D. M. Atkin, T. A. Birks, P. J. Roberts, “Bound modes of two-dimensional photonic crystal waveguides,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996).
[CrossRef]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Birks, T. A.

T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996); see also errata Opt. Lett. 22, 484–485 (1997).
[CrossRef] [PubMed]

D. M. Atkin, P. St. J. Russell, T. A. Birks, P. J. Roberts, “Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure,” J. Mod. Opt. 43, 1035–1053 (1996);P. St. J. Russell, D. M. Atkin, T. A. Birks, P. J. Roberts, “Bound modes of two-dimensional photonic crystal waveguides,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996).
[CrossRef]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Campillo, A. J.

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992); H. B. Lin, R. J. Tonucci, A. J. Campillo, “Observation of two-dimensional photonic band behavior in the visible,” Appl. Phys. Lett. 88, 2927–2929 (1996).
[CrossRef] [PubMed]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996);J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
[CrossRef] [PubMed]

Dyott, R. B.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, “Determination of core diameter and refractive-index difference of single-mode fibers by observation of the far-field pattern,” Microwaves Opt. Acoustics 1, 13–17 (1976).
[CrossRef]

Fan, S. H.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996);J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
[CrossRef] [PubMed]

Ford, C. E.

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992); H. B. Lin, R. J. Tonucci, A. J. Campillo, “Observation of two-dimensional photonic band behavior in the visible,” Appl. Phys. Lett. 88, 2927–2929 (1996).
[CrossRef] [PubMed]

Gambling, W. A.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, “Determination of core diameter and refractive-index difference of single-mode fibers by observation of the far-field pattern,” Microwaves Opt. Acoustics 1, 13–17 (1976).
[CrossRef]

Joannopoulos, J. D.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996);J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
[CrossRef] [PubMed]

Justus, B. L.

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992); H. B. Lin, R. J. Tonucci, A. J. Campillo, “Observation of two-dimensional photonic band behavior in the visible,” Appl. Phys. Lett. 88, 2927–2929 (1996).
[CrossRef] [PubMed]

Knight, J. C.

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996);J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
[CrossRef] [PubMed]

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Matsumura, H.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, “Determination of core diameter and refractive-index difference of single-mode fibers by observation of the far-field pattern,” Microwaves Opt. Acoustics 1, 13–17 (1976).
[CrossRef]

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996);J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
[CrossRef] [PubMed]

Payne, D. N.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, “Determination of core diameter and refractive-index difference of single-mode fibers by observation of the far-field pattern,” Microwaves Opt. Acoustics 1, 13–17 (1976).
[CrossRef]

Roberts, P. J.

D. M. Atkin, P. St. J. Russell, T. A. Birks, P. J. Roberts, “Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure,” J. Mod. Opt. 43, 1035–1053 (1996);P. St. J. Russell, D. M. Atkin, T. A. Birks, P. J. Roberts, “Bound modes of two-dimensional photonic crystal waveguides,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996).
[CrossRef]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Russell, P. St. J.

T. A. Birks, J. C. Knight, P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996); see also errata Opt. Lett. 22, 484–485 (1997).
[CrossRef] [PubMed]

D. M. Atkin, P. St. J. Russell, T. A. Birks, P. J. Roberts, “Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure,” J. Mod. Opt. 43, 1035–1053 (1996);P. St. J. Russell, D. M. Atkin, T. A. Birks, P. J. Roberts, “Bound modes of two-dimensional photonic crystal waveguides,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996).
[CrossRef]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Shepherd, T. J.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Tonucci, R. J.

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992); H. B. Lin, R. J. Tonucci, A. J. Campillo, “Observation of two-dimensional photonic band behavior in the visible,” Appl. Phys. Lett. 88, 2927–2929 (1996).
[CrossRef] [PubMed]

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996);J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
[CrossRef] [PubMed]

Am. J. Phys. (1)

D. E. Aspnes, “Local-field effects and effective-medium theory: microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[CrossRef]

Electron. Lett. (1)

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, T. J. Shepherd, “Full 2-d photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

J. Mod. Opt. (1)

D. M. Atkin, P. St. J. Russell, T. A. Birks, P. J. Roberts, “Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure,” J. Mod. Opt. 43, 1035–1053 (1996);P. St. J. Russell, D. M. Atkin, T. A. Birks, P. J. Roberts, “Bound modes of two-dimensional photonic crystal waveguides,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

See, e.g., the special issues on Development and Applications of Materials Exhibiting Photonic Band Gaps, J. Opt. Soc. Am. B 10, 279–413 (1993); J. Mod. Opt. 41, special issue on “Photonic Band Structures,” (1994); Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996).

Microwaves Opt. Acoustics (1)

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, “Determination of core diameter and refractive-index difference of single-mode fibers by observation of the far-field pattern,” Microwaves Opt. Acoustics 1, 13–17 (1976).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996);J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
[CrossRef] [PubMed]

Science (1)

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992); H. B. Lin, R. J. Tonucci, A. J. Campillo, “Observation of two-dimensional photonic band behavior in the visible,” Appl. Phys. Lett. 88, 2927–2929 (1996).
[CrossRef] [PubMed]

Other (1)

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the silica–air PCF being discussed. A typical fiber has ∼300 air holes arranged in a hexagonal pattern and is many meters long.

Fig. 2
Fig. 2

Near-field contour maps of the fundamental guided mode in a PCF at the two wavelengths λ= 458 nm and λ= 1.55 µm. The spacing between the air holes (and hence the core radius) in the fiber used here is approximately Λ=2.3 µm, and d/Λ=0.23.

Fig. 3
Fig. 3

The effective normalized frequency Veff plotted versus Λ/λ (curves) for several values of d/Λ, and experimental points for the several fibers described in Table 1. The fibers investigated experimentally do not correspond exactly to those represented by the curves but were plotted as separate curves (not shown). Circles, observed monomode fibers; squares, fibers supporting more than a single mode.

Fig. 4
Fig. 4

Near-field map of a second-order mode selectively excited in a fiber with Λ= 4.9 µm and d/Λ=0.29.

Fig. 5
Fig. 5

Dependence of spot size on wavelength (logarithmic scale) for a conventional optical fiber (solid curve) and a PCF (points). The axes are scaled so that they correspond in the long-wavelength limit where ncl=navg. The dotted curve shows the conventional result corrected for the variation of Veff with wavelength.

Tables (1)

Tables Icon

Table 1 Parameters of Some Photonic Crystal Fibers Observed to Support One or Two Modes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V=2πρλ(nco2-ncl2)1/2

Metrics