M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964), p. 377, Eq. (9.7.1).

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964), p. 378, Eqs. (9.8.1)–(9.8.4) along with the recursion relation of Eq. (9.6.26).

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964), p. 375, Eq. (9.6.10).

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964), p. 375, Eq. (9.6.9); p. 378, Eq. (9.7.2).

P. M. Aker, P. A. Moortgat, J.-X. Zhang, “Morphology-dependent stimulated Raman scattering imaging. 1. Theoretical aspects,” J. Chem. Phys. 105, 7268–7275 (1996).

[CrossRef]

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

E. E. M. Khaled, S. C. Hill, P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).

[CrossRef]
[PubMed]

E. E. M. Khaled, S. C. Hill, P. W. Barber, D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166–1169 (1992).

[CrossRef]
[PubMed]

P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).

[CrossRef]

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

H.-B. Lin, J. D. Eversole, A. J. Campillo, J. P. Barton, “Excitation localization principle for spherical microcavities,” Opt. Lett. (to published).

S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 194–204.

H.-B. Lin, J. D. Eversole, A. J. Campillo, J. P. Barton, “Excitation localization principle for spherical microcavities,” Opt. Lett. (to published).

P. Chylek, J. D. Pendleton, R. G. Pinnick, “Internal and near-surface scattered field of a spherical particle at resonant conditions,” Appl. Opt. 24, 3940–3942 (1985).

[CrossRef]
[PubMed]

P. Chylek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).

[CrossRef]

P. Chylek, “Partial-wave resonances and the ripple structure in the Mie normalized extinction cross section,” J. Opt. Soc. Am. 66, 285–287 (1976).

[CrossRef]

H.-B. Lin, J. D. Eversole, A. J. Campillo, J. P. Barton, “Excitation localization principle for spherical microcavities,” Opt. Lett. (to published).

Another localized approximation for the beam-shape coefficients for scattering by a cylinder is described in K. F. Ren, G. Gréhan, G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

J. A. Lock, G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet, J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

B. Maheu, G. Gréhan, G. Gouesbet, “Ray localization in Gaussian beams,” Opt. Commun. 70, 259–262 (1989).

[CrossRef]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965), p. 307, Eq. (3.326).

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965), p. 307, Eq. (3.323.3).

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965), p. 718, Eq. (6.633.4).

A. Gray, G. B. Mathews, A Treatise on Bessel Functions and Their Applications to Physics (Dover, New York, 1966), p. 36.

Another localized approximation for the beam-shape coefficients for scattering by a cylinder is described in K. F. Ren, G. Gréhan, G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

B. Maheu, G. Gréhan, G. Gouesbet, “Ray localization in Gaussian beams,” Opt. Commun. 70, 259–262 (1989).

[CrossRef]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

E. E. M. Khaled, S. C. Hill, P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).

[CrossRef]
[PubMed]

E. E. M. Khaled, S. C. Hill, P. W. Barber, D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166–1169 (1992).

[CrossRef]
[PubMed]

S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 194–204.

The situation is described clearly in M. Kerker, P. J. McNulty, M. Sculley, H. Chew, D. D. Cooke, “Raman and fluorescent scattering by molecules embedded in small particles: numerical results for incoherent optical processes,” J. Opt. Soc. Am. 68, 1676–1686 (1978).

[CrossRef]

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), pp. 98–99, Figs. 4.1 and 4.2.

E. E. M. Khaled, S. C. Hill, P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).

[CrossRef]
[PubMed]

E. E. M. Khaled, S. C. Hill, P. W. Barber, D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166–1169 (1992).

[CrossRef]
[PubMed]

P. Chylek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).

[CrossRef]

P. Chylek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).

[CrossRef]

Equation (63) of Ref. 15 giving the optimal beam position for sphere MDR’s, is also valid for cylinder MDR’s since the calculation leading to Eq. (1.1) of C. C. Lam, P. T. Leung, K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585–1592 (1992), on which the result of Ref. 15 is based, is valid for Bessel functions of both integer order (cylinders) and half-integer order (spheres).

[CrossRef]

Equation (63) of Ref. 15 giving the optimal beam position for sphere MDR’s, is also valid for cylinder MDR’s since the calculation leading to Eq. (1.1) of C. C. Lam, P. T. Leung, K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585–1592 (1992), on which the result of Ref. 15 is based, is valid for Bessel functions of both integer order (cylinders) and half-integer order (spheres).

[CrossRef]

H.-B. Lin, J. D. Eversole, A. J. Campillo, J. P. Barton, “Excitation localization principle for spherical microcavities,” Opt. Lett. (to published).

A. Serpenguzel, S. Arnold, G. Griffel, J. A. Lock, “Enhanced coupling to microsphere resonances with optical fibers,” J. Opt. Soc. Am. B 14, 790–795 (1997).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–661 (1997).

[CrossRef]

J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995).

[CrossRef]
[PubMed]

G. Gouesbet, J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

J. A. Lock, G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

B. Maheu, G. Gréhan, G. Gouesbet, “Ray localization in Gaussian beams,” Opt. Commun. 70, 259–262 (1989).

[CrossRef]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

A. Gray, G. B. Mathews, A Treatise on Bessel Functions and Their Applications to Physics (Dover, New York, 1966), p. 36.

P. M. Aker, P. A. Moortgat, J.-X. Zhang, “Morphology-dependent stimulated Raman scattering imaging. 1. Theoretical aspects,” J. Chem. Phys. 105, 7268–7275 (1996).

[CrossRef]

L. G. Guimaraes, H. M. Nussenzveig, “Theory of Mie resonances and ripple fluctuations,” Opt. Commun. 89, 363–369 (1992).

[CrossRef]

H. M. Nussenzveig, “Tunneling effects in diffractive scattering and resonances,” Comments At. Mol. Phys. 4, 175–187 (1989).

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965), p. 718, Eq. (6.633.4).

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965), p. 307, Eq. (3.323.3).

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965), p. 307, Eq. (3.326).

J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading, Mass., 1980), pp. 36–57.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964), p. 375, Eq. (9.6.10).

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964), p. 375, Eq. (9.6.9); p. 378, Eq. (9.7.2).

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964), p. 378, Eqs. (9.8.1)–(9.8.4) along with the recursion relation of Eq. (9.6.26).

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964), p. 377, Eq. (9.7.1).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), pp. 208–209.

Equation (63) of Ref. 15 giving the optimal beam position for sphere MDR’s, is also valid for cylinder MDR’s since the calculation leading to Eq. (1.1) of C. C. Lam, P. T. Leung, K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585–1592 (1992), on which the result of Ref. 15 is based, is valid for Bessel functions of both integer order (cylinders) and half-integer order (spheres).

[CrossRef]

P. M. Aker, P. A. Moortgat, J.-X. Zhang, “Morphology-dependent stimulated Raman scattering imaging. 1. Theoretical aspects,” J. Chem. Phys. 105, 7268–7275 (1996).

[CrossRef]

E. E. M. Khaled, S. C. Hill, P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).

[CrossRef]
[PubMed]

L. G. Guimaraes, J. P. Rodrigues, F. de Mendonca, “Analysis of the resonant scattering of light by cylinders at oblique incidence,” Appl. Opt. 36, 8010–8019 (1997).

[CrossRef]

G. Roll, G. Schweiger, “Resonance shift of obliquely illuminated dielectric cylinders,” Appl. Opt. 37, 5628–5630 (1998).

[CrossRef]

J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995).

[CrossRef]
[PubMed]

H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).

[CrossRef]
[PubMed]

P. Chylek, J. D. Pendleton, R. G. Pinnick, “Internal and near-surface scattered field of a spherical particle at resonant conditions,” Appl. Opt. 24, 3940–3942 (1985).

[CrossRef]
[PubMed]

E. E. M. Khaled, S. C. Hill, P. W. Barber, D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31, 1166–1169 (1992).

[CrossRef]
[PubMed]

H. M. Nussenzveig, “Tunneling effects in diffractive scattering and resonances,” Comments At. Mol. Phys. 4, 175–187 (1989).

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

P. M. Aker, P. A. Moortgat, J.-X. Zhang, “Morphology-dependent stimulated Raman scattering imaging. 1. Theoretical aspects,” J. Chem. Phys. 105, 7268–7275 (1996).

[CrossRef]

P. Chylek, “Partial-wave resonances and the ripple structure in the Mie normalized extinction cross section,” J. Opt. Soc. Am. 66, 285–287 (1976).

[CrossRef]

The situation is described clearly in M. Kerker, P. J. McNulty, M. Sculley, H. Chew, D. D. Cooke, “Raman and fluorescent scattering by molecules embedded in small particles: numerical results for incoherent optical processes,” J. Opt. Soc. Am. 68, 1676–1686 (1978).

[CrossRef]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

J. A. Lock, G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet, J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–661 (1997).

[CrossRef]

Another localized approximation for the beam-shape coefficients for scattering by a cylinder is described in K. F. Ren, G. Gréhan, G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A 10, 343–352 (1993).

[CrossRef]

Equation (63) of Ref. 15 giving the optimal beam position for sphere MDR’s, is also valid for cylinder MDR’s since the calculation leading to Eq. (1.1) of C. C. Lam, P. T. Leung, K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585–1592 (1992), on which the result of Ref. 15 is based, is valid for Bessel functions of both integer order (cylinders) and half-integer order (spheres).

[CrossRef]

A. Serpenguzel, S. Arnold, G. Griffel, J. A. Lock, “Enhanced coupling to microsphere resonances with optical fibers,” J. Opt. Soc. Am. B 14, 790–795 (1997).

[CrossRef]

L. G. Guimaraes, H. M. Nussenzveig, “Theory of Mie resonances and ripple fluctuations,” Opt. Commun. 89, 363–369 (1992).

[CrossRef]

B. Maheu, G. Gréhan, G. Gouesbet, “Ray localization in Gaussian beams,” Opt. Commun. 70, 259–262 (1989).

[CrossRef]

P. Chylek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).

[CrossRef]

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), pp. 208–209.

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964), p. 378, Eqs. (9.8.1)–(9.8.4) along with the recursion relation of Eq. (9.6.26).

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964), p. 375, Eq. (9.6.10).

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964), p. 377, Eq. (9.7.1).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 194–204.

A. Gray, G. B. Mathews, A Treatise on Bessel Functions and Their Applications to Physics (Dover, New York, 1966), p. 36.

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965), p. 718, Eq. (6.633.4).

S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965), p. 307, Eq. (3.323.3).

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964), p. 375, Eq. (9.6.9); p. 378, Eq. (9.7.2).

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965), p. 307, Eq. (3.326).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), pp. 98–99, Figs. 4.1 and 4.2.

J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading, Mass., 1980), pp. 36–57.

H.-B. Lin, J. D. Eversole, A. J. Campillo, J. P. Barton, “Excitation localization principle for spherical microcavities,” Opt. Lett. (to published).