Abstract

Separate pathways have recently been proposed for “fast” and “slow” motion, whose properties differ in the way that color contrast is processed [see Nature (London) 367, 268 (1994); Trends Neurosci. 19, 394 (1996); and Vision Res. 36, 1281 (1996) and Vision Res. 35, 1547 (1995)]. One reported difference is that for slow motion the direction of chromatic stimuli cannot be determined at detection threshold, whereas at higher temporal rates detection and direction discrimination threshold coincide. Using a carefully designed psychophysical procedure, we measured simultaneously the thresholds for detection, direction discrimination, and color identification for isoluminant red–green and achromatic Gabor patches (1.5 cpd), over the range of visible temporal frequencies (1–16 Hz). We find that the color of both the red–green and the achromatic targets can be identified at detection threshold, indicating effective isolation of the luminance and the red–green mechanisms at all stimulus speeds. For the achromatic mechanism, direction discrimination was always possible at detection threshold. For the red–green mechanism, we find that direction discrimination thresholds are significantly greater than detection thresholds at all stimulus speeds. This result calls into question models of chromatic motion processing that are dichotomized along the lines of stimulus speed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Hawken, K. R. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
    [CrossRef]
  2. K. R. Gegenfurtner, M. J. Hawken, “Interaction of motion and color in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
    [CrossRef] [PubMed]
  3. K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: Influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
    [CrossRef] [PubMed]
  4. K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
    [CrossRef] [PubMed]
  5. C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally opponent,” Invest. Ophthalmol. Visual Sci. 31, S240 (1990).
  6. D. T. Lindsey, D. Y. Teller, “Motion at isolumince: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
    [CrossRef]
  7. P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
    [CrossRef] [PubMed]
  8. A. Fiorentini, D. Burr, C. Morrone, “Temporal characteristics of colour vision: VEP and psychophysical measurements,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 139–149.
  9. K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
    [CrossRef] [PubMed]
  10. J. Palmer, L. A. Mobley, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios and the summation of luminance and chromatic signals,” J. Opt. Soc. Am. A 10, 1353–1362 (1993).
    [CrossRef] [PubMed]
  11. D. Y. Teller, D. T. Lindsey, “Motion at isoluminance: motion dead zones in three-dimensional color space,” J. Opt. Soc. Am. A 10, 1324–1331 (1993).
    [CrossRef] [PubMed]
  12. A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance, and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
    [CrossRef]
  13. C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).
  14. A. Metha, “Detection and direction discrimination in terms of post-receptoral mechanisms,” Ph.D. thesis (The University of Melbourne, Melbourne, Australia, 1994).
  15. A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
    [CrossRef] [PubMed]
  16. D. Regan, C. W. Tyler, “Some dynamic features of colour vision,” Vision Res. 11, 1307–1324 (1971).
    [CrossRef] [PubMed]
  17. P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
    [CrossRef] [PubMed]
  18. C. F. Stromeyer, A. Chapparo, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).
  19. A. B. Metha, K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1969–1980 (1996).
    [CrossRef]
  20. N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).
  21. S. J. Cropper, A. M. Derrington, “Rapid colour-specific detection of motion in human vision,” Nature (London) 379, 72–74 (1996).
    [CrossRef]
  22. A. B. Metha, K. T. Mullen, “Red–green and achromatic temporal filters: a ratio model predicts contrast-dependent speed perception,” J. Opt. Soc. Am. A 14, 984–996 (1997).
    [CrossRef]

1997

C. F. Stromeyer, A. Chapparo, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).

A. B. Metha, K. T. Mullen, “Red–green and achromatic temporal filters: a ratio model predicts contrast-dependent speed perception,” J. Opt. Soc. Am. A 14, 984–996 (1997).
[CrossRef]

1996

S. J. Cropper, A. M. Derrington, “Rapid colour-specific detection of motion in human vision,” Nature (London) 379, 72–74 (1996).
[CrossRef]

A. B. Metha, K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1969–1980 (1996).
[CrossRef]

K. R. Gegenfurtner, M. J. Hawken, “Interaction of motion and color in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: Influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

1995

K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
[CrossRef] [PubMed]

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

1994

M. J. Hawken, K. R. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance, and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

1993

1992

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

1991

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef] [PubMed]

1990

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally opponent,” Invest. Ophthalmol. Visual Sci. 31, S240 (1990).

D. T. Lindsey, D. Y. Teller, “Motion at isolumince: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef]

1987

1971

D. Regan, C. W. Tyler, “Some dynamic features of colour vision,” Vision Res. 11, 1307–1324 (1971).
[CrossRef] [PubMed]

Anstis, S.

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef] [PubMed]

Anstis, S. M.

Badcock, D. R.

Boulton, J. C.

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

Burr, D.

A. Fiorentini, D. Burr, C. Morrone, “Temporal characteristics of colour vision: VEP and psychophysical measurements,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 139–149.

Cavanagh, P.

Chapparo, A.

C. F. Stromeyer, A. Chapparo, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

Cropper, S. J.

S. J. Cropper, A. M. Derrington, “Rapid colour-specific detection of motion in human vision,” Nature (London) 379, 72–74 (1996).
[CrossRef]

Derrington, A. M.

S. J. Cropper, A. M. Derrington, “Rapid colour-specific detection of motion in human vision,” Nature (London) 379, 72–74 (1996).
[CrossRef]

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

Eskew, R. T.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally opponent,” Invest. Ophthalmol. Visual Sci. 31, S240 (1990).

Fiorentini, A.

A. Fiorentini, D. Burr, C. Morrone, “Temporal characteristics of colour vision: VEP and psychophysical measurements,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 139–149.

Gegenfurtner, K. R.

K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: Influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Interaction of motion and color in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
[CrossRef] [PubMed]

M. J. Hawken, K. R. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Graham, N.

N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).

Hawken, M. J.

K. R. Gegenfurtner, M. J. Hawken, “Interaction of motion and color in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: Influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
[CrossRef] [PubMed]

M. J. Hawken, K. R. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Henning, G. B.

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

Kronauer, R. E.

C. F. Stromeyer, A. Chapparo, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally opponent,” Invest. Ophthalmol. Visual Sci. 31, S240 (1990).

Lindsey, D. T.

D. Y. Teller, D. T. Lindsey, “Motion at isoluminance: motion dead zones in three-dimensional color space,” J. Opt. Soc. Am. A 10, 1324–1331 (1993).
[CrossRef] [PubMed]

D. T. Lindsey, D. Y. Teller, “Motion at isolumince: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef]

MacLeod, D. I. A.

Metha, A.

A. Metha, “Detection and direction discrimination in terms of post-receptoral mechanisms,” Ph.D. thesis (The University of Melbourne, Melbourne, Australia, 1994).

Metha, A. B.

Mobley, L. A.

Morrone, C.

A. Fiorentini, D. Burr, C. Morrone, “Temporal characteristics of colour vision: VEP and psychophysical measurements,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 139–149.

Mullen, K. T.

Palmer, J.

Regan, D.

D. Regan, C. W. Tyler, “Some dynamic features of colour vision,” Vision Res. 11, 1307–1324 (1971).
[CrossRef] [PubMed]

Ryu, A.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

Stromeyer, C. F.

C. F. Stromeyer, A. Chapparo, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally opponent,” Invest. Ophthalmol. Visual Sci. 31, S240 (1990).

Tang, C.

M. J. Hawken, K. R. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Teller, D. Y.

Tolias, A. S.

C. F. Stromeyer, A. Chapparo, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).

Tyler, C. W.

D. Regan, C. W. Tyler, “Some dynamic features of colour vision,” Vision Res. 11, 1307–1324 (1971).
[CrossRef] [PubMed]

Vingrys, A. J.

Invest. Ophthalmol. Visual Sci.

C. F. Stromeyer, R. T. Eskew, R. E. Kronauer, “The most sensitive motion detectors in humans are spectrally opponent,” Invest. Ophthalmol. Visual Sci. 31, S240 (1990).

J. Opt. Soc. Am. A

J. Physiol. (London)

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

C. F. Stromeyer, A. Chapparo, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).

Nature (London)

S. J. Cropper, A. M. Derrington, “Rapid colour-specific detection of motion in human vision,” Nature (London) 379, 72–74 (1996).
[CrossRef]

M. J. Hawken, K. R. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Trends Neurosci.

K. R. Gegenfurtner, M. J. Hawken, “Interaction of motion and color in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
[CrossRef] [PubMed]

Vision Res.

K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: Influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
[CrossRef] [PubMed]

D. T. Lindsey, D. Y. Teller, “Motion at isolumince: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef]

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef] [PubMed]

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

D. Regan, C. W. Tyler, “Some dynamic features of colour vision,” Vision Res. 11, 1307–1324 (1971).
[CrossRef] [PubMed]

Other

A. Metha, “Detection and direction discrimination in terms of post-receptoral mechanisms,” Ph.D. thesis (The University of Melbourne, Melbourne, Australia, 1994).

N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).

A. Fiorentini, D. Burr, C. Morrone, “Temporal characteristics of colour vision: VEP and psychophysical measurements,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 139–149.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Input cone-contrast ratios for the luminance mechanism as a function of temporal frequency (TF). Each point represents the average and standard deviation of 10–20 minimum-motion settings. The gray curves drawn through the data are best-fitting power functions to these data: PM (circles), L:M=5.265×TF-0.240; KTM (triangles), L:M=4.913×TF-0.124; ABM (squares), L:M=1.884×TF0.178).

Fig. 2
Fig. 2

Detection (open symbols) and direction discrimination (filled symbols) thresholds plotted as RMS cone-contrast sensitivity as a function of temporal frequency for all three observers. The top and bottom panels show performance with isoluminant RG and achromatic targets, respectively.

Fig. 3
Fig. 3

Threshold gaps for all observers expressed in log10 units for average color identification (triangles), and direction discrimination for RG (circles) and achromatic (squares) targets as a function of stimulus drift speed. We use the average of the RG and achromatic color identification threshold gaps in this plot to compensate for the potential bias in identifying stimulus color, as explained in the text. Unconnected points on the right present the average threshold gaps across all speeds tested. Error bars represent the estimated standard deviations for these calculations.

Metrics