Abstract

General surface scattering is characterized through the bidirectional reflection distribution function (BRDF). The BRDF is a function of the directions of the incident and remitted beams and thus depends on four parameters. Under very general assumptions one shows that the BRDF is invariant under interchange of the incident and remitted beams, the so-called Helmholtz reciprocity. For isotropic surfaces the BRDF depends only on the absolute value of the difference between the azimuths of the incident and remitted beams. Since these exhaust the symmetries, the BRDF is a very complicated function. For many applications it would be advantageous to be able to summarize empirical data or to smooth and/or interpolate (often even extrapolate) BRDF data. We present a principled way to do this, exactly respecting the symmetry properties.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription