Abstract

Computational optical-sectioning microscopy with a nonconfocal microscope is fundamentally limited because the optical transfer function, the Fourier transform of the point-spread function, is exactly zero over a conic region of the spatial-frequency domain. Because of this missing cone of optical information, images are potentially artifactual. To overcome this limitation, superresolution, in the sense of band extrapolation, is necessary. I present a frequency-domain analysis of the expectation-maximization algorithm for maximum-likelihood image estimation that shows how the algorithm achieves this band extrapolation. This analysis gives the theoretical absolute bandwidth of the restored image; however, this absolute value may not be realistic in many cases. Then a second analysis is presented that assumes a Gaussian point-spread function and a specimen function and shows more realistic behavior of the algorithm and demonstrates some of its properties. Experimental results on the superresolving capability of the algorithm are also presented.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (47)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription