Abstract

We show that the problem of scattering of light from an achiral object in a chiral environment, which was recently studied by Lindell and Silverman [J. Opt. Soc. Am. A 14, 79 (1997)], is merely a straightforward special case of the problem of either a chiral or a bianisotropic object in a chiral environment, solutions of which problem have existed for a while.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. V. Lindell, M. P. Silverman, “Plane-wave scattering from a nonchiral object in a chiral environment,” J. Opt. Soc. Am. A 14, 79–90 (1997).
    [CrossRef]
  2. U. B. Unrau, “A bibliography on research in the field of bi-anisotropic, bi-isotropic and chiral media and their microwave applications,” in Proceedings of CHIRAL ’94: 3rd International Workshop on Chiral, Bi-isotropic and Bi-anisotropic Media, Périgueux , France, May 18–20, 1994, F. Mariotte, J. P. Parneix, eds. (French Atomic Energy Commission, Le Barp, 1994). (For an electronic version of the recently updated bibliography, contact http://www.maths.gla.ac.uk/~tropics/chirall.html .)
  3. C. F. Bohren, “Scattering by an optically active spherical shell,” J. Chem. Phys. 62, 1566–1571 (1975).
    [CrossRef]
  4. A. N. Godlevskaya, V. N. Kapshai, “Electromagnetic wave scattering by a metal sphere in naturally gyrotropic medium,” Dokl. Akad. Nauk BSSR 33, 332–335 (1989).
  5. A. N. Godlevskaya, V. N. Kapshai, “Electromagnetic wave scattering by spherical particles in naturally gyrotropic media,” Opt. Spectrosc. 68, 122–127 (1990).
  6. A. A. Afonin, A. N. Godlevskaya, V. N. Kapshai, S. P. Kurlovich, A. N. Serdyukov, “Electromagnetic wave scattering by a dual-layer spherical particle in naturally gyrotropic medium,” Opt. Spectrosc. 69, 406–411 (1990).
  7. A. H. Sihvola, O. P. M. Pekonen, “Effective medium formulae for bi-anisotropic mixtures,” J. Phys. D Appl. Phys. 29, 514–521 (1996).
    [CrossRef]
  8. Currently, some researchers think that the so-called bi-isotropic materials—which have direction-independent constitutive properties more complicated than those of chiral materials—may recognizably exist; see, e.g., R. E. Raab, A. H. Sihvola, “On the existence of linear non-reciprocal bi-isotropic (NRBI) media,” J. Phys. A Math. Gen. 30, 1335–1344 (1997). Others, including the present author, dispute that contention and have provided mathematical proofs as well. Indeed, no physical sample consistent with the Lorentz–Heaviside visualization of electromagnetic theory has ever been reported; see A. Lakhtakia, “An investigative report on the constructive [sic] relations of linear magnetoelectric media,” Int. J. Infrared Millim. Waves 15, 1363–1372 (1994); W. S. Weiglhofer, A. Lakhtakia, “On the nonexistence of linear nonreciprocal bi-isotropic (NRBI) media,” J. Phys. A Math. Gen. 30, 2597–2600 (1997). For the present purpose, however, it does not matter if a medium is bi-isotropic or chiral.
    [CrossRef]
  9. B. Shanker, “A comment on ‘Effective medium formulae for bi-anisotropic mixtures’,” J. Phys. D Appl. Phys. 30, 289–290 (1997).
    [CrossRef]
  10. A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Effective properties of a sparse random distribution of non- interacting small chiral spheres in a chiral host medium,” J. Phys. D Appl. Phys. 24, 1–6 (1991).
    [CrossRef]
  11. R. D. Kampia, A. Lakhtakia, “Bruggeman model for chiral particulate composites,” J. Phys. D Appl. Phys. 25, 1390–1394 (1992).
    [CrossRef]
  12. A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Field equations, Huygens’s principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media,” J. Opt. Soc. Am. A 5, 175–184 (1988). (See Ref. 20 below for updates of the developments initiated in this paper.)
    [CrossRef]
  13. A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Influence of impedance mismatch between a chiral scatterer and the surrounding chiral medium,” J. Mod. Opt. 36, 1385–1392 (1989).
    [CrossRef]
  14. J. C. Monzon, “Radiation and scattering in homogeneous general biisotropic regions,” IEEE Trans. Antennas Propag. 38, 227–235 (1990).
    [CrossRef]
  15. A. Lakhtakia, “The extended boundary condition method for scattering by a chiral scatterer in a chiral medium: formulation and analysis,” Optik 86, 155–161 (1991). (See Ref. 16 for errata.)
  16. A. Lakhtakia, “On the Huygens’s principles and the Ewald–Oseen extinction theorems for, and the scattering of, Beltrami fields,” Optik 91, 35–40 (1992).
  17. B. Shanker, A. Lakhtakia, “Extended Maxwell Garnett model for chiral-in-chiral composites,” J. Phys. D Appl. Phys. 26, 1746–1758 (1993).
    [CrossRef]
  18. A. Lakhtakia, B. Shanker, “Beltrami fields within continuous source regions, volume integral equations, scattering algorithms, and the extended Maxwell–Garnett model,” Int. J. Appl. Electromagn. Mater. 4, 65–82 (1993).
  19. A. Lakhtakia, ed., Selected Papers on Natural Optical Activity, Milestone Series, Vol. 15 (SPIE Optical Engineering Press, Belhingham, Wash., 1990).
  20. A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, Singapore, 1994).

1997 (3)

Currently, some researchers think that the so-called bi-isotropic materials—which have direction-independent constitutive properties more complicated than those of chiral materials—may recognizably exist; see, e.g., R. E. Raab, A. H. Sihvola, “On the existence of linear non-reciprocal bi-isotropic (NRBI) media,” J. Phys. A Math. Gen. 30, 1335–1344 (1997). Others, including the present author, dispute that contention and have provided mathematical proofs as well. Indeed, no physical sample consistent with the Lorentz–Heaviside visualization of electromagnetic theory has ever been reported; see A. Lakhtakia, “An investigative report on the constructive [sic] relations of linear magnetoelectric media,” Int. J. Infrared Millim. Waves 15, 1363–1372 (1994); W. S. Weiglhofer, A. Lakhtakia, “On the nonexistence of linear nonreciprocal bi-isotropic (NRBI) media,” J. Phys. A Math. Gen. 30, 2597–2600 (1997). For the present purpose, however, it does not matter if a medium is bi-isotropic or chiral.
[CrossRef]

B. Shanker, “A comment on ‘Effective medium formulae for bi-anisotropic mixtures’,” J. Phys. D Appl. Phys. 30, 289–290 (1997).
[CrossRef]

I. V. Lindell, M. P. Silverman, “Plane-wave scattering from a nonchiral object in a chiral environment,” J. Opt. Soc. Am. A 14, 79–90 (1997).
[CrossRef]

1996 (1)

A. H. Sihvola, O. P. M. Pekonen, “Effective medium formulae for bi-anisotropic mixtures,” J. Phys. D Appl. Phys. 29, 514–521 (1996).
[CrossRef]

1993 (2)

B. Shanker, A. Lakhtakia, “Extended Maxwell Garnett model for chiral-in-chiral composites,” J. Phys. D Appl. Phys. 26, 1746–1758 (1993).
[CrossRef]

A. Lakhtakia, B. Shanker, “Beltrami fields within continuous source regions, volume integral equations, scattering algorithms, and the extended Maxwell–Garnett model,” Int. J. Appl. Electromagn. Mater. 4, 65–82 (1993).

1992 (2)

A. Lakhtakia, “On the Huygens’s principles and the Ewald–Oseen extinction theorems for, and the scattering of, Beltrami fields,” Optik 91, 35–40 (1992).

R. D. Kampia, A. Lakhtakia, “Bruggeman model for chiral particulate composites,” J. Phys. D Appl. Phys. 25, 1390–1394 (1992).
[CrossRef]

1991 (2)

A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Effective properties of a sparse random distribution of non- interacting small chiral spheres in a chiral host medium,” J. Phys. D Appl. Phys. 24, 1–6 (1991).
[CrossRef]

A. Lakhtakia, “The extended boundary condition method for scattering by a chiral scatterer in a chiral medium: formulation and analysis,” Optik 86, 155–161 (1991). (See Ref. 16 for errata.)

1990 (3)

J. C. Monzon, “Radiation and scattering in homogeneous general biisotropic regions,” IEEE Trans. Antennas Propag. 38, 227–235 (1990).
[CrossRef]

A. N. Godlevskaya, V. N. Kapshai, “Electromagnetic wave scattering by spherical particles in naturally gyrotropic media,” Opt. Spectrosc. 68, 122–127 (1990).

A. A. Afonin, A. N. Godlevskaya, V. N. Kapshai, S. P. Kurlovich, A. N. Serdyukov, “Electromagnetic wave scattering by a dual-layer spherical particle in naturally gyrotropic medium,” Opt. Spectrosc. 69, 406–411 (1990).

1989 (2)

A. N. Godlevskaya, V. N. Kapshai, “Electromagnetic wave scattering by a metal sphere in naturally gyrotropic medium,” Dokl. Akad. Nauk BSSR 33, 332–335 (1989).

A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Influence of impedance mismatch between a chiral scatterer and the surrounding chiral medium,” J. Mod. Opt. 36, 1385–1392 (1989).
[CrossRef]

1988 (1)

1975 (1)

C. F. Bohren, “Scattering by an optically active spherical shell,” J. Chem. Phys. 62, 1566–1571 (1975).
[CrossRef]

Afonin, A. A.

A. A. Afonin, A. N. Godlevskaya, V. N. Kapshai, S. P. Kurlovich, A. N. Serdyukov, “Electromagnetic wave scattering by a dual-layer spherical particle in naturally gyrotropic medium,” Opt. Spectrosc. 69, 406–411 (1990).

Bohren, C. F.

C. F. Bohren, “Scattering by an optically active spherical shell,” J. Chem. Phys. 62, 1566–1571 (1975).
[CrossRef]

Godlevskaya, A. N.

A. N. Godlevskaya, V. N. Kapshai, “Electromagnetic wave scattering by spherical particles in naturally gyrotropic media,” Opt. Spectrosc. 68, 122–127 (1990).

A. A. Afonin, A. N. Godlevskaya, V. N. Kapshai, S. P. Kurlovich, A. N. Serdyukov, “Electromagnetic wave scattering by a dual-layer spherical particle in naturally gyrotropic medium,” Opt. Spectrosc. 69, 406–411 (1990).

A. N. Godlevskaya, V. N. Kapshai, “Electromagnetic wave scattering by a metal sphere in naturally gyrotropic medium,” Dokl. Akad. Nauk BSSR 33, 332–335 (1989).

Kampia, R. D.

R. D. Kampia, A. Lakhtakia, “Bruggeman model for chiral particulate composites,” J. Phys. D Appl. Phys. 25, 1390–1394 (1992).
[CrossRef]

Kapshai, V. N.

A. N. Godlevskaya, V. N. Kapshai, “Electromagnetic wave scattering by spherical particles in naturally gyrotropic media,” Opt. Spectrosc. 68, 122–127 (1990).

A. A. Afonin, A. N. Godlevskaya, V. N. Kapshai, S. P. Kurlovich, A. N. Serdyukov, “Electromagnetic wave scattering by a dual-layer spherical particle in naturally gyrotropic medium,” Opt. Spectrosc. 69, 406–411 (1990).

A. N. Godlevskaya, V. N. Kapshai, “Electromagnetic wave scattering by a metal sphere in naturally gyrotropic medium,” Dokl. Akad. Nauk BSSR 33, 332–335 (1989).

Kurlovich, S. P.

A. A. Afonin, A. N. Godlevskaya, V. N. Kapshai, S. P. Kurlovich, A. N. Serdyukov, “Electromagnetic wave scattering by a dual-layer spherical particle in naturally gyrotropic medium,” Opt. Spectrosc. 69, 406–411 (1990).

Lakhtakia, A.

B. Shanker, A. Lakhtakia, “Extended Maxwell Garnett model for chiral-in-chiral composites,” J. Phys. D Appl. Phys. 26, 1746–1758 (1993).
[CrossRef]

A. Lakhtakia, B. Shanker, “Beltrami fields within continuous source regions, volume integral equations, scattering algorithms, and the extended Maxwell–Garnett model,” Int. J. Appl. Electromagn. Mater. 4, 65–82 (1993).

A. Lakhtakia, “On the Huygens’s principles and the Ewald–Oseen extinction theorems for, and the scattering of, Beltrami fields,” Optik 91, 35–40 (1992).

R. D. Kampia, A. Lakhtakia, “Bruggeman model for chiral particulate composites,” J. Phys. D Appl. Phys. 25, 1390–1394 (1992).
[CrossRef]

A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Effective properties of a sparse random distribution of non- interacting small chiral spheres in a chiral host medium,” J. Phys. D Appl. Phys. 24, 1–6 (1991).
[CrossRef]

A. Lakhtakia, “The extended boundary condition method for scattering by a chiral scatterer in a chiral medium: formulation and analysis,” Optik 86, 155–161 (1991). (See Ref. 16 for errata.)

A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Influence of impedance mismatch between a chiral scatterer and the surrounding chiral medium,” J. Mod. Opt. 36, 1385–1392 (1989).
[CrossRef]

A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Field equations, Huygens’s principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media,” J. Opt. Soc. Am. A 5, 175–184 (1988). (See Ref. 20 below for updates of the developments initiated in this paper.)
[CrossRef]

A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, Singapore, 1994).

Lindell, I. V.

Monzon, J. C.

J. C. Monzon, “Radiation and scattering in homogeneous general biisotropic regions,” IEEE Trans. Antennas Propag. 38, 227–235 (1990).
[CrossRef]

Pekonen, O. P. M.

A. H. Sihvola, O. P. M. Pekonen, “Effective medium formulae for bi-anisotropic mixtures,” J. Phys. D Appl. Phys. 29, 514–521 (1996).
[CrossRef]

Raab, R. E.

Currently, some researchers think that the so-called bi-isotropic materials—which have direction-independent constitutive properties more complicated than those of chiral materials—may recognizably exist; see, e.g., R. E. Raab, A. H. Sihvola, “On the existence of linear non-reciprocal bi-isotropic (NRBI) media,” J. Phys. A Math. Gen. 30, 1335–1344 (1997). Others, including the present author, dispute that contention and have provided mathematical proofs as well. Indeed, no physical sample consistent with the Lorentz–Heaviside visualization of electromagnetic theory has ever been reported; see A. Lakhtakia, “An investigative report on the constructive [sic] relations of linear magnetoelectric media,” Int. J. Infrared Millim. Waves 15, 1363–1372 (1994); W. S. Weiglhofer, A. Lakhtakia, “On the nonexistence of linear nonreciprocal bi-isotropic (NRBI) media,” J. Phys. A Math. Gen. 30, 2597–2600 (1997). For the present purpose, however, it does not matter if a medium is bi-isotropic or chiral.
[CrossRef]

Serdyukov, A. N.

A. A. Afonin, A. N. Godlevskaya, V. N. Kapshai, S. P. Kurlovich, A. N. Serdyukov, “Electromagnetic wave scattering by a dual-layer spherical particle in naturally gyrotropic medium,” Opt. Spectrosc. 69, 406–411 (1990).

Shanker, B.

B. Shanker, “A comment on ‘Effective medium formulae for bi-anisotropic mixtures’,” J. Phys. D Appl. Phys. 30, 289–290 (1997).
[CrossRef]

B. Shanker, A. Lakhtakia, “Extended Maxwell Garnett model for chiral-in-chiral composites,” J. Phys. D Appl. Phys. 26, 1746–1758 (1993).
[CrossRef]

A. Lakhtakia, B. Shanker, “Beltrami fields within continuous source regions, volume integral equations, scattering algorithms, and the extended Maxwell–Garnett model,” Int. J. Appl. Electromagn. Mater. 4, 65–82 (1993).

Sihvola, A. H.

Currently, some researchers think that the so-called bi-isotropic materials—which have direction-independent constitutive properties more complicated than those of chiral materials—may recognizably exist; see, e.g., R. E. Raab, A. H. Sihvola, “On the existence of linear non-reciprocal bi-isotropic (NRBI) media,” J. Phys. A Math. Gen. 30, 1335–1344 (1997). Others, including the present author, dispute that contention and have provided mathematical proofs as well. Indeed, no physical sample consistent with the Lorentz–Heaviside visualization of electromagnetic theory has ever been reported; see A. Lakhtakia, “An investigative report on the constructive [sic] relations of linear magnetoelectric media,” Int. J. Infrared Millim. Waves 15, 1363–1372 (1994); W. S. Weiglhofer, A. Lakhtakia, “On the nonexistence of linear nonreciprocal bi-isotropic (NRBI) media,” J. Phys. A Math. Gen. 30, 2597–2600 (1997). For the present purpose, however, it does not matter if a medium is bi-isotropic or chiral.
[CrossRef]

A. H. Sihvola, O. P. M. Pekonen, “Effective medium formulae for bi-anisotropic mixtures,” J. Phys. D Appl. Phys. 29, 514–521 (1996).
[CrossRef]

Silverman, M. P.

Unrau, U. B.

U. B. Unrau, “A bibliography on research in the field of bi-anisotropic, bi-isotropic and chiral media and their microwave applications,” in Proceedings of CHIRAL ’94: 3rd International Workshop on Chiral, Bi-isotropic and Bi-anisotropic Media, Périgueux , France, May 18–20, 1994, F. Mariotte, J. P. Parneix, eds. (French Atomic Energy Commission, Le Barp, 1994). (For an electronic version of the recently updated bibliography, contact http://www.maths.gla.ac.uk/~tropics/chirall.html .)

Varadan, V. K.

A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Effective properties of a sparse random distribution of non- interacting small chiral spheres in a chiral host medium,” J. Phys. D Appl. Phys. 24, 1–6 (1991).
[CrossRef]

A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Influence of impedance mismatch between a chiral scatterer and the surrounding chiral medium,” J. Mod. Opt. 36, 1385–1392 (1989).
[CrossRef]

A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Field equations, Huygens’s principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media,” J. Opt. Soc. Am. A 5, 175–184 (1988). (See Ref. 20 below for updates of the developments initiated in this paper.)
[CrossRef]

Varadan, V. V.

A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Effective properties of a sparse random distribution of non- interacting small chiral spheres in a chiral host medium,” J. Phys. D Appl. Phys. 24, 1–6 (1991).
[CrossRef]

A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Influence of impedance mismatch between a chiral scatterer and the surrounding chiral medium,” J. Mod. Opt. 36, 1385–1392 (1989).
[CrossRef]

A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Field equations, Huygens’s principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media,” J. Opt. Soc. Am. A 5, 175–184 (1988). (See Ref. 20 below for updates of the developments initiated in this paper.)
[CrossRef]

Dokl. Akad. Nauk BSSR (1)

A. N. Godlevskaya, V. N. Kapshai, “Electromagnetic wave scattering by a metal sphere in naturally gyrotropic medium,” Dokl. Akad. Nauk BSSR 33, 332–335 (1989).

IEEE Trans. Antennas Propag. (1)

J. C. Monzon, “Radiation and scattering in homogeneous general biisotropic regions,” IEEE Trans. Antennas Propag. 38, 227–235 (1990).
[CrossRef]

Int. J. Appl. Electromagn. Mater. (1)

A. Lakhtakia, B. Shanker, “Beltrami fields within continuous source regions, volume integral equations, scattering algorithms, and the extended Maxwell–Garnett model,” Int. J. Appl. Electromagn. Mater. 4, 65–82 (1993).

J. Chem. Phys. (1)

C. F. Bohren, “Scattering by an optically active spherical shell,” J. Chem. Phys. 62, 1566–1571 (1975).
[CrossRef]

J. Mod. Opt. (1)

A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Influence of impedance mismatch between a chiral scatterer and the surrounding chiral medium,” J. Mod. Opt. 36, 1385–1392 (1989).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. A Math. Gen. (1)

Currently, some researchers think that the so-called bi-isotropic materials—which have direction-independent constitutive properties more complicated than those of chiral materials—may recognizably exist; see, e.g., R. E. Raab, A. H. Sihvola, “On the existence of linear non-reciprocal bi-isotropic (NRBI) media,” J. Phys. A Math. Gen. 30, 1335–1344 (1997). Others, including the present author, dispute that contention and have provided mathematical proofs as well. Indeed, no physical sample consistent with the Lorentz–Heaviside visualization of electromagnetic theory has ever been reported; see A. Lakhtakia, “An investigative report on the constructive [sic] relations of linear magnetoelectric media,” Int. J. Infrared Millim. Waves 15, 1363–1372 (1994); W. S. Weiglhofer, A. Lakhtakia, “On the nonexistence of linear nonreciprocal bi-isotropic (NRBI) media,” J. Phys. A Math. Gen. 30, 2597–2600 (1997). For the present purpose, however, it does not matter if a medium is bi-isotropic or chiral.
[CrossRef]

J. Phys. D Appl. Phys. (5)

B. Shanker, “A comment on ‘Effective medium formulae for bi-anisotropic mixtures’,” J. Phys. D Appl. Phys. 30, 289–290 (1997).
[CrossRef]

A. Lakhtakia, V. K. Varadan, V. V. Varadan, “Effective properties of a sparse random distribution of non- interacting small chiral spheres in a chiral host medium,” J. Phys. D Appl. Phys. 24, 1–6 (1991).
[CrossRef]

R. D. Kampia, A. Lakhtakia, “Bruggeman model for chiral particulate composites,” J. Phys. D Appl. Phys. 25, 1390–1394 (1992).
[CrossRef]

A. H. Sihvola, O. P. M. Pekonen, “Effective medium formulae for bi-anisotropic mixtures,” J. Phys. D Appl. Phys. 29, 514–521 (1996).
[CrossRef]

B. Shanker, A. Lakhtakia, “Extended Maxwell Garnett model for chiral-in-chiral composites,” J. Phys. D Appl. Phys. 26, 1746–1758 (1993).
[CrossRef]

Opt. Spectrosc. (2)

A. N. Godlevskaya, V. N. Kapshai, “Electromagnetic wave scattering by spherical particles in naturally gyrotropic media,” Opt. Spectrosc. 68, 122–127 (1990).

A. A. Afonin, A. N. Godlevskaya, V. N. Kapshai, S. P. Kurlovich, A. N. Serdyukov, “Electromagnetic wave scattering by a dual-layer spherical particle in naturally gyrotropic medium,” Opt. Spectrosc. 69, 406–411 (1990).

Optik (2)

A. Lakhtakia, “The extended boundary condition method for scattering by a chiral scatterer in a chiral medium: formulation and analysis,” Optik 86, 155–161 (1991). (See Ref. 16 for errata.)

A. Lakhtakia, “On the Huygens’s principles and the Ewald–Oseen extinction theorems for, and the scattering of, Beltrami fields,” Optik 91, 35–40 (1992).

Other (3)

A. Lakhtakia, ed., Selected Papers on Natural Optical Activity, Milestone Series, Vol. 15 (SPIE Optical Engineering Press, Belhingham, Wash., 1990).

A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, Singapore, 1994).

U. B. Unrau, “A bibliography on research in the field of bi-anisotropic, bi-isotropic and chiral media and their microwave applications,” in Proceedings of CHIRAL ’94: 3rd International Workshop on Chiral, Bi-isotropic and Bi-anisotropic Media, Périgueux , France, May 18–20, 1994, F. Mariotte, J. P. Parneix, eds. (French Atomic Energy Commission, Le Barp, 1994). (For an electronic version of the recently updated bibliography, contact http://www.maths.gla.ac.uk/~tropics/chirall.html .)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics