Abstract

Probe–flash threshold curves were used to show that adaptation to textured fields consists not only of adaptation to the steady local constituents but also of a process that is similar to habituation to prolonged temporal modulation, which in this case could be caused by miniature eye movements across element boundaries. The response curves derived from probe-flash thresholds are compressive on both sides of the adaptation level after adaptation to spatially uniform fields but have an accelerating form when they are measured after adaptation to textured backgrounds. This change is suggestive of a response equalization process, which modifies the response function of each mechanism to match the cumulative frequency distribution of its inputs.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Shapiro, Q. Zaidi, “The effect of prolonged temporal modulation on the differential response of color mechanisms,” Vision Res. 32, 2065–2075 (1992).
    [CrossRef] [PubMed]
  2. Q. Zaidi, A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
    [CrossRef] [PubMed]
  3. K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. (London) 92, 406–421 (1938).
  4. M. D’Zmura, P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
    [CrossRef] [PubMed]
  5. M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
    [CrossRef] [PubMed]
  6. Q. Zaidi, A. G. Shapiro, D. C. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
    [CrossRef] [PubMed]
  7. J. Krauskopf, K. Gegenfurtner, “Adaptation and color discrimination,” Vision Res. 32, 2165–2175 (1992).
    [CrossRef] [PubMed]
  8. E. N. Pugh, J. D. Mollon, “A theory of the π1 and π3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
    [CrossRef]
  9. W. S. Geisler, “Initial image and after-image discrimination in the human rod and cone system,” J. Physiol. (London) 294, 165–179 (1979).
  10. E. H. Adelson, “Saturation and adaptation of the rod system,” Vision Res. 22, 1299–1312 (1982).
    [CrossRef]
  11. M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time course of multiplicative and subtractive adaptation processes,” Vision Res. 27, 1981–1996 (1987).
    [CrossRef]
  12. S. Laughlin, “A simple coding procedure enhances a neuron’s information capacity,” Z. Naturforsch. 36, 910–912 (1981).
  13. J. Krauskopf, D. R. Williams, D. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
    [CrossRef] [PubMed]
  14. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  15. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. A 69, 1183–1186 (1979).
    [CrossRef]
  16. Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
    [CrossRef] [PubMed]
  17. R. H. S. Carpenter, Movements of the Eyes (Pion, London, 1988).
  18. A. Shapiro, Q. Zaidi, D. Hood, “Adaptation in the red–green (L-M) color system,” Invest. Ophthalmol. Visual Sci. S31, 262 (1990).
  19. T. E. Weigand, N. Graham, D. C. Hood, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
    [CrossRef]
  20. H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
    [CrossRef] [PubMed]
  21. N. B. Haaser, J. A. Sullivan, Real Analysis (Van Nostrand Reinhold, New York, 1971).
  22. D. I. A. MacLeod, T. von der Twer, “Optimal nonlinear codes,” Invest. Ophthalmol. Visual Sci. 38, S254 (1997).
  23. Q. Zaidi, B. Spehar, J. S. DeBonet, “Color constancy in variegated scenes:the role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621.
    [CrossRef]
  24. N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).
  25. M. W. Greenlee, F. Heitger, “The functional role of contrast adaptation,” Vision Res. 28, 791–797 (1988).
    [CrossRef] [PubMed]
  26. J. A. Movshon, P. Lennie, “Pattern selective adaptation in visual cortical neurones,” Nature (London) 278, 850–852 (1979).
    [CrossRef]
  27. G. Sclar, P. Lennie, D. D. DePriest, “Contrast adaptation in striate cortex of macaque,” Vision Res. 29, 747–755 (1989).
    [CrossRef] [PubMed]
  28. M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
    [CrossRef] [PubMed]
  29. M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature (London) 373, 694–698 (1995).
    [CrossRef]
  30. Q. Zaidi, “Adaptation processes governed by the distribution of inputs,” European Conference on Visual Perception, Perception 22, Suppl. 2, 62 (1993).
  31. B. Harris, Theory of Probability (Addison-Wesley, Reading, Mass., 1966).
  32. N. Brady, D. J. Field, “Early nonlinearities in visual coding and natural image statistics,” Invest. Ophthalmol. Visual Sci. 38, S633 (1997).
  33. S. Haykin, Blind Deconvolution (Prentice-Hall, Englewood Cliffs, N.J., 1994).
  34. A. J. Bell, T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Comput. 7, 1129–1159 (1995).
    [CrossRef] [PubMed]
  35. J. L. Dannemiller, “Rank ordering of photoreceptors catches from objects are nearly illumination invariant,” Vision Res. 33, 131–137 (1993).
    [CrossRef] [PubMed]
  36. D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 250, 116–121 (1994).
  37. K. J. Linnell, D. H. Foster, “Dependence of relational colour constancy on the extraction of a transient signal,” Perception 25, 221–228 (1996).
    [PubMed]

1997 (2)

D. I. A. MacLeod, T. von der Twer, “Optimal nonlinear codes,” Invest. Ophthalmol. Visual Sci. 38, S254 (1997).

N. Brady, D. J. Field, “Early nonlinearities in visual coding and natural image statistics,” Invest. Ophthalmol. Visual Sci. 38, S633 (1997).

1996 (1)

K. J. Linnell, D. H. Foster, “Dependence of relational colour constancy on the extraction of a transient signal,” Perception 25, 221–228 (1996).
[PubMed]

1995 (3)

A. J. Bell, T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Comput. 7, 1129–1159 (1995).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature (London) 373, 694–698 (1995).
[CrossRef]

T. E. Weigand, N. Graham, D. C. Hood, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef]

1994 (2)

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 250, 116–121 (1994).

1993 (5)

Q. Zaidi, A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
[CrossRef] [PubMed]

Q. Zaidi, “Adaptation processes governed by the distribution of inputs,” European Conference on Visual Perception, Perception 22, Suppl. 2, 62 (1993).

J. L. Dannemiller, “Rank ordering of photoreceptors catches from objects are nearly illumination invariant,” Vision Res. 33, 131–137 (1993).
[CrossRef] [PubMed]

H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
[CrossRef] [PubMed]

Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
[CrossRef] [PubMed]

1992 (4)

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

Q. Zaidi, A. G. Shapiro, D. C. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

J. Krauskopf, K. Gegenfurtner, “Adaptation and color discrimination,” Vision Res. 32, 2165–2175 (1992).
[CrossRef] [PubMed]

A. G. Shapiro, Q. Zaidi, “The effect of prolonged temporal modulation on the differential response of color mechanisms,” Vision Res. 32, 2065–2075 (1992).
[CrossRef] [PubMed]

1990 (1)

A. Shapiro, Q. Zaidi, D. Hood, “Adaptation in the red–green (L-M) color system,” Invest. Ophthalmol. Visual Sci. S31, 262 (1990).

1989 (1)

G. Sclar, P. Lennie, D. D. DePriest, “Contrast adaptation in striate cortex of macaque,” Vision Res. 29, 747–755 (1989).
[CrossRef] [PubMed]

1988 (1)

M. W. Greenlee, F. Heitger, “The functional role of contrast adaptation,” Vision Res. 28, 791–797 (1988).
[CrossRef] [PubMed]

1987 (1)

M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time course of multiplicative and subtractive adaptation processes,” Vision Res. 27, 1981–1996 (1987).
[CrossRef]

1986 (1)

1984 (1)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

1982 (2)

E. H. Adelson, “Saturation and adaptation of the rod system,” Vision Res. 22, 1299–1312 (1982).
[CrossRef]

J. Krauskopf, D. R. Williams, D. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

1981 (1)

S. Laughlin, “A simple coding procedure enhances a neuron’s information capacity,” Z. Naturforsch. 36, 910–912 (1981).

1979 (4)

E. N. Pugh, J. D. Mollon, “A theory of the π1 and π3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

W. S. Geisler, “Initial image and after-image discrimination in the human rod and cone system,” J. Physiol. (London) 294, 165–179 (1979).

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. A 69, 1183–1186 (1979).
[CrossRef]

J. A. Movshon, P. Lennie, “Pattern selective adaptation in visual cortical neurones,” Nature (London) 278, 850–852 (1979).
[CrossRef]

1938 (1)

K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. (London) 92, 406–421 (1938).

Adelson, E. H.

E. H. Adelson, “Saturation and adaptation of the rod system,” Vision Res. 22, 1299–1312 (1982).
[CrossRef]

Bell, A. J.

A. J. Bell, T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Comput. 7, 1129–1159 (1995).
[CrossRef] [PubMed]

Benimoff, N. I.

M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time course of multiplicative and subtractive adaptation processes,” Vision Res. 27, 1981–1996 (1987).
[CrossRef]

Boynton, R. M.

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. A 69, 1183–1186 (1979).
[CrossRef]

Brady, N.

N. Brady, D. J. Field, “Early nonlinearities in visual coding and natural image statistics,” Invest. Ophthalmol. Visual Sci. 38, S633 (1997).

Carpenter, R. H. S.

R. H. S. Carpenter, Movements of the Eyes (Pion, London, 1988).

Craik, K. J. W.

K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. (London) 92, 406–421 (1938).

D’Zmura, M.

Dannemiller, J. L.

J. L. Dannemiller, “Rank ordering of photoreceptors catches from objects are nearly illumination invariant,” Vision Res. 33, 131–137 (1993).
[CrossRef] [PubMed]

DeBonet, J. S.

DePriest, D. D.

G. Sclar, P. Lennie, D. D. DePriest, “Contrast adaptation in striate cortex of macaque,” Vision Res. 29, 747–755 (1989).
[CrossRef] [PubMed]

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Fairchild, M. D.

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

Field, D. J.

N. Brady, D. J. Field, “Early nonlinearities in visual coding and natural image statistics,” Invest. Ophthalmol. Visual Sci. 38, S633 (1997).

Foster, D. H.

K. J. Linnell, D. H. Foster, “Dependence of relational colour constancy on the extraction of a transient signal,” Perception 25, 221–228 (1996).
[PubMed]

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 250, 116–121 (1994).

Gegenfurtner, K.

J. Krauskopf, K. Gegenfurtner, “Adaptation and color discrimination,” Vision Res. 32, 2165–2175 (1992).
[CrossRef] [PubMed]

Geisler, W. S.

W. S. Geisler, “Initial image and after-image discrimination in the human rod and cone system,” J. Physiol. (London) 294, 165–179 (1979).

Graham, N.

T. E. Weigand, N. Graham, D. C. Hood, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef]

N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).

Greenlee, M. W.

M. W. Greenlee, F. Heitger, “The functional role of contrast adaptation,” Vision Res. 28, 791–797 (1988).
[CrossRef] [PubMed]

Haaser, N. B.

N. B. Haaser, J. A. Sullivan, Real Analysis (Van Nostrand Reinhold, New York, 1971).

Halevy, D.

Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
[CrossRef] [PubMed]

Harris, B.

B. Harris, Theory of Probability (Addison-Wesley, Reading, Mass., 1966).

Hayhoe, M. M.

M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time course of multiplicative and subtractive adaptation processes,” Vision Res. 27, 1981–1996 (1987).
[CrossRef]

Haykin, S.

S. Haykin, Blind Deconvolution (Prentice-Hall, Englewood Cliffs, N.J., 1994).

Heeley, D.

J. Krauskopf, D. R. Williams, D. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Heitger, F.

M. W. Greenlee, F. Heitger, “The functional role of contrast adaptation,” Vision Res. 28, 791–797 (1988).
[CrossRef] [PubMed]

Hood, D.

A. Shapiro, Q. Zaidi, D. Hood, “Adaptation in the red–green (L-M) color system,” Invest. Ophthalmol. Visual Sci. S31, 262 (1990).

Hood, D. C.

T. E. Weigand, N. Graham, D. C. Hood, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef]

Q. Zaidi, A. G. Shapiro, D. C. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time course of multiplicative and subtractive adaptation processes,” Vision Res. 27, 1981–1996 (1987).
[CrossRef]

Humanski, R.

H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
[CrossRef] [PubMed]

Krauskopf, J.

J. Krauskopf, K. Gegenfurtner, “Adaptation and color discrimination,” Vision Res. 32, 2165–2175 (1992).
[CrossRef] [PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

J. Krauskopf, D. R. Williams, D. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Laughlin, S.

S. Laughlin, “A simple coding procedure enhances a neuron’s information capacity,” Z. Naturforsch. 36, 910–912 (1981).

Lennie, P.

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

G. Sclar, P. Lennie, D. D. DePriest, “Contrast adaptation in striate cortex of macaque,” Vision Res. 29, 747–755 (1989).
[CrossRef] [PubMed]

M. D’Zmura, P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
[CrossRef] [PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

J. A. Movshon, P. Lennie, “Pattern selective adaptation in visual cortical neurones,” Nature (London) 278, 850–852 (1979).
[CrossRef]

Linnell, K. J.

K. J. Linnell, D. H. Foster, “Dependence of relational colour constancy on the extraction of a transient signal,” Perception 25, 221–228 (1996).
[PubMed]

MacLeod, D. I. A.

D. I. A. MacLeod, T. von der Twer, “Optimal nonlinear codes,” Invest. Ophthalmol. Visual Sci. 38, S254 (1997).

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. A 69, 1183–1186 (1979).
[CrossRef]

Mollon, J. D.

M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature (London) 373, 694–698 (1995).
[CrossRef]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

E. N. Pugh, J. D. Mollon, “A theory of the π1 and π3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

Movshon, J. A.

J. A. Movshon, P. Lennie, “Pattern selective adaptation in visual cortical neurones,” Nature (London) 278, 850–852 (1979).
[CrossRef]

Nascimento, S. M. C.

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 250, 116–121 (1994).

Pugh, E. N.

E. N. Pugh, J. D. Mollon, “A theory of the π1 and π3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

Sclar, G.

G. Sclar, P. Lennie, D. D. DePriest, “Contrast adaptation in striate cortex of macaque,” Vision Res. 29, 747–755 (1989).
[CrossRef] [PubMed]

Sejnowski, T. J.

A. J. Bell, T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Comput. 7, 1129–1159 (1995).
[CrossRef] [PubMed]

Shapiro, A.

A. Shapiro, Q. Zaidi, D. Hood, “Adaptation in the red–green (L-M) color system,” Invest. Ophthalmol. Visual Sci. S31, 262 (1990).

Shapiro, A. G.

Q. Zaidi, A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
[CrossRef] [PubMed]

A. G. Shapiro, Q. Zaidi, “The effect of prolonged temporal modulation on the differential response of color mechanisms,” Vision Res. 32, 2065–2075 (1992).
[CrossRef] [PubMed]

Q. Zaidi, A. G. Shapiro, D. C. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

Spehar, B.

Sullivan, J. A.

N. B. Haaser, J. A. Sullivan, Real Analysis (Van Nostrand Reinhold, New York, 1971).

von der Twer, T.

D. I. A. MacLeod, T. von der Twer, “Optimal nonlinear codes,” Invest. Ophthalmol. Visual Sci. 38, S254 (1997).

Webster, M. A.

M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature (London) 373, 694–698 (1995).
[CrossRef]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

Weigand, T. E.

T. E. Weigand, N. Graham, D. C. Hood, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef]

Williams, D. R.

J. Krauskopf, D. R. Williams, D. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Wilson, H. R.

H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
[CrossRef] [PubMed]

Zaidi, Q.

Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
[CrossRef] [PubMed]

Q. Zaidi, “Adaptation processes governed by the distribution of inputs,” European Conference on Visual Perception, Perception 22, Suppl. 2, 62 (1993).

Q. Zaidi, A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
[CrossRef] [PubMed]

A. G. Shapiro, Q. Zaidi, “The effect of prolonged temporal modulation on the differential response of color mechanisms,” Vision Res. 32, 2065–2075 (1992).
[CrossRef] [PubMed]

Q. Zaidi, A. G. Shapiro, D. C. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

A. Shapiro, Q. Zaidi, D. Hood, “Adaptation in the red–green (L-M) color system,” Invest. Ophthalmol. Visual Sci. S31, 262 (1990).

Q. Zaidi, B. Spehar, J. S. DeBonet, “Color constancy in variegated scenes:the role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621.
[CrossRef]

Biol. Cybern. (1)

Q. Zaidi, A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
[CrossRef] [PubMed]

European Conference on Visual Perception, Perception (1)

Q. Zaidi, “Adaptation processes governed by the distribution of inputs,” European Conference on Visual Perception, Perception 22, Suppl. 2, 62 (1993).

Invest. Ophthalmol. Visual Sci. (3)

N. Brady, D. J. Field, “Early nonlinearities in visual coding and natural image statistics,” Invest. Ophthalmol. Visual Sci. 38, S633 (1997).

D. I. A. MacLeod, T. von der Twer, “Optimal nonlinear codes,” Invest. Ophthalmol. Visual Sci. 38, S254 (1997).

A. Shapiro, Q. Zaidi, D. Hood, “Adaptation in the red–green (L-M) color system,” Invest. Ophthalmol. Visual Sci. S31, 262 (1990).

J. Opt. Soc. Am. A (3)

J. Physiol. (London) (3)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

W. S. Geisler, “Initial image and after-image discrimination in the human rod and cone system,” J. Physiol. (London) 294, 165–179 (1979).

K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. (London) 92, 406–421 (1938).

Nature (London) (2)

J. A. Movshon, P. Lennie, “Pattern selective adaptation in visual cortical neurones,” Nature (London) 278, 850–852 (1979).
[CrossRef]

M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature (London) 373, 694–698 (1995).
[CrossRef]

Neural Comput. (1)

A. J. Bell, T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Comput. 7, 1129–1159 (1995).
[CrossRef] [PubMed]

Perception (1)

K. J. Linnell, D. H. Foster, “Dependence of relational colour constancy on the extraction of a transient signal,” Perception 25, 221–228 (1996).
[PubMed]

Proc. R. Soc. London, Ser. B (1)

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 250, 116–121 (1994).

Vision Res. (15)

J. L. Dannemiller, “Rank ordering of photoreceptors catches from objects are nearly illumination invariant,” Vision Res. 33, 131–137 (1993).
[CrossRef] [PubMed]

G. Sclar, P. Lennie, D. D. DePriest, “Contrast adaptation in striate cortex of macaque,” Vision Res. 29, 747–755 (1989).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

M. W. Greenlee, F. Heitger, “The functional role of contrast adaptation,” Vision Res. 28, 791–797 (1988).
[CrossRef] [PubMed]

Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
[CrossRef] [PubMed]

A. G. Shapiro, Q. Zaidi, “The effect of prolonged temporal modulation on the differential response of color mechanisms,” Vision Res. 32, 2065–2075 (1992).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, D. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

T. E. Weigand, N. Graham, D. C. Hood, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef]

H. R. Wilson, R. Humanski, “Spatial frequency adaptation and contrast gain control,” Vision Res. 33, 1133–1149 (1993).
[CrossRef] [PubMed]

E. H. Adelson, “Saturation and adaptation of the rod system,” Vision Res. 22, 1299–1312 (1982).
[CrossRef]

M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time course of multiplicative and subtractive adaptation processes,” Vision Res. 27, 1981–1996 (1987).
[CrossRef]

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

Q. Zaidi, A. G. Shapiro, D. C. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

J. Krauskopf, K. Gegenfurtner, “Adaptation and color discrimination,” Vision Res. 32, 2165–2175 (1992).
[CrossRef] [PubMed]

E. N. Pugh, J. D. Mollon, “A theory of the π1 and π3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

Z. Naturforsch. (1)

S. Laughlin, “A simple coding procedure enhances a neuron’s information capacity,” Z. Naturforsch. 36, 910–912 (1981).

Other (5)

N. B. Haaser, J. A. Sullivan, Real Analysis (Van Nostrand Reinhold, New York, 1971).

R. H. S. Carpenter, Movements of the Eyes (Pion, London, 1988).

N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).

S. Haykin, Blind Deconvolution (Prentice-Hall, Englewood Cliffs, N.J., 1994).

B. Harris, Theory of Probability (Addison-Wesley, Reading, Mass., 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Spatial configuration and temporal sequence of stimuli for Experiments 1 and 2. The initial adaptation period was 120 s. Each trial was followed by a 2-s period of readaptation. In Experiment 2 only, each trial was preceded by a 0.5-s pause in which the screen was set to W. In each trial, for 0.05 s the screen was divided into two vertical or horizontal halves, F+0.5P and F-0.5P. For an additional 0.25 s the screen was set to F.

Fig. 2
Fig. 2

Results of Experiment 1 for observers BS and HZ. Probe thresholds in ΔL/(L+M) units for each of the four adapting backgrounds are plotted versus the L/(L+M) coordinates of the flash levels. The open squares represent thresholds measured under adaptation to W. The filled circles represent thresholds measured under adaptation to the textured background. The sets of open triangles and crosses represent thresholds measured after adaptation to the spatially uniform R and G fields, respectively. The dashed lines are the best regression fits to the data for the corresponding adaptation conditions.

Fig. 3
Fig. 3

Results of Experiment 2 for observers BS and HZ. Probe thresholds in ΔL/(L+M) units for each of the four adapting backgrounds are plotted versus the L/(L+M) coordinates of the flashed judgment levels. The open squares represent thresholds measured under adaptation to W. The filled circles represent thresholds measured under adaptation to the textured background. The dashed and solid lines are the best regression fits to the data for the corresponding adaptation conditions. The sets of open triangles and crosses represent thresholds measured after adaptation to the spatially uniform R and G fields, respectively.

Fig. 4
Fig. 4

Schematic of the L-M color mechanism, showing a postopponent HPTF and an adaptable nonlinear response function.

Fig. 5
Fig. 5

Left, estimated response functions for observers BS and HZ (see text for description). The dashed curves represent adaptation to the uniform surround; the solid curves represent habituation to the variegated surround after more-transient effects have subsided. Right, cumulative probability distributions for input levels from the uniform surround (dashed line) and the variegated surround (solid line).

Fig. 6
Fig. 6

Probe thresholds measured under adaptation to the textured background (Experiment 1) plotted in ΔL/(L+M) versus the L/(L+M) coordinates of the flashed judgment levels. The dashed lines represent the prediction from Eq. (5). The solid lines represent the prediction from Eq. (6).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Z=1β+log(α+β+Q)-1β+log(α)forQ0,
Z=1β-log(α+β-Q)-1β-log(α)forQ<0.
|Z(F+0.5P)-Z(F-0.5P)|Pα+βF.
P=κ(α+β+F)forF0,
P=κ(α+β-F)forF<0.
ZT=[(nRZR)ϕ+(nGZG)ϕ+(nHZH)ϕ]1/ϕ,
PTi=min(PRi, PGi, PHi).
PTi=max(PRi, PGi, PHi).
PRiPGiPHiPTi=nRPGiPHi+nGPRiPHi+nHPRiPGi.

Metrics