Abstract

We put forward rigorous two-dimensional numerical calculations of the electromagnetic interaction between a nanometric tip and a corrugated dielectric interface when the tip scans the surface at nanometric distance. The surface is illuminated from its dielectric side by a p-polarized wave at normal incidence or under total internal reflection. Large tip–substrate optical interactions appear for small distances between these two bodies. The far-field images produced by recording the intensity scattered by either the tip or the sample are analyzed in terms of several experimental parameters, namely, the angles of incidence and observation, the dielectric permittivities of the tip and the surface, and the tip–sample distance. The influence of the component of the electric field normal to the surface is discussed. The role of periodic modulation of the vertical position of the tip is also investigated.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, “Scanning near-field optical microscopy,” in Advances in Optical and Electron Microscopy, J. R. Sheppard, T. Mulvey, eds. (Academic, New York, 1991), pp. 243–311.
  2. D. W. Pohl, D. Courjon, eds., Near-Field Optics, Vol. 242 of NATO ASI Series E (Kluwer, Dordrecht, The Netherlands, 1993).
  3. M. Nieto-Vesperinas, N. Garcı́a, eds., Optics at the Nanometer Scale, Vol. 319 of NATO ASI Series E (Kluwer, Dordrecht, The Netherlands, 1996).
  4. M. Specht, J. D. Pedarning, W. M. Heckl, T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
    [CrossRef] [PubMed]
  5. N. F. van Hulst, M. H. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62, 461–463 (1993).
    [CrossRef]
  6. F. Zenhausern, M. P. O’Boyle, K. H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
    [CrossRef]
  7. Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
    [CrossRef] [PubMed]
  8. S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser traped probe,” Jpn. J. Appl. Phys. 33, 1725–1727 (1994).
    [CrossRef]
  9. R. Bachelot, P. Gleyzes, A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995).
    [CrossRef] [PubMed]
  10. F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning Interferometric apertureless microscopy,” Science 269, 1083–1085 (1995).
    [CrossRef] [PubMed]
  11. Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
    [CrossRef]
  12. A. Lahrech, R. Bachelot, P. Gleyzes, A. C. Boccara, “Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of λ/600,” Opt. Lett. 21, 1315–1317 (1996).
    [CrossRef] [PubMed]
  13. Y. Inouye, S. Kawata, “Reflection-mode near-field optical microscope with a metallic probe tip for observing fine structures in semiconductor materials,” Opt. Commun. 134, 31–35 (1997).
    [CrossRef]
  14. J. M. Vigoureux, C. Girard, D. Courjon, “General principles of scanning tunneling optical microscopy,” Opt. Lett. 14, 1039–1041 (1989).
    [CrossRef] [PubMed]
  15. D. Van Labeke, D. Barchiesi, “Scanning-tunneling optical microscopy: a theoretical macroscopic approach,” J. Opt. Soc. Am. A 9, 732–739 (1992).
    [CrossRef]
  16. W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,” J. Vac. Sci. Technol. B 9, 510–513 (1991).
    [CrossRef]
  17. D. Van Labeke, D. Barchiesi, “Probes for scanning tunneling optical microscopy: a theoretical comparison,” J. Opt. Soc. Am. A 10, 2193–2201 (1993).
    [CrossRef]
  18. D. Barchiesi, D. Van Labeke, “Application of Mie scattering of evanescent waves to scanning tunneling optical microscopy theory,” J. Mod. Opt. 40, 1239–1254 (1993).
    [CrossRef]
  19. M. Xiao, S. Bozhevolnyi, “Imaging with reflection near-field optical microscope: contributions of middle and far fields,” Opt. Commun. 130, 337–347 (1996).
    [CrossRef]
  20. A. Madrazo, M. Nieto-Vesperinas, “Imaging properties of a nanocylinder close to a surface,” J. Opt. Soc. Am. A 14, 2768–2776 (1997).
    [CrossRef]
  21. C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14,467–14,473 (1994).
    [CrossRef]
  22. C. Girard, A. Dereux, “Optical spectroscopy of a surface at the nanometer scale: a theoretical study in real space,” Phys. Rev. B 49, 11,344–11,351 (1994).
    [CrossRef]
  23. O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
    [CrossRef] [PubMed]
  24. C. Girard, O. J. F. Martin, A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098–3101 (1995).
    [CrossRef] [PubMed]
  25. C. Girard, A. Dereux, “Near field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
    [CrossRef]
  26. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991), Chap. 2, p. 52.
  27. A. Madrazo, M. Nieto-Vesperinas, “Scattering of electromagnetics waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
    [CrossRef]
  28. A. Madrazo, M. Nieto-Vesperinas, “Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 785–795 (1996); “Reconstruction of corrugated dielectric surfaces with a model of a photon scanning tunneling microscope. Influence of the tip on the near field,” J. Opt. Soc. Am. A 14, 618–628 (1997).
    [CrossRef]
  29. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994); A. Madrazo, M. Nieto-Vesperinas, “Detection of subwavelength Goos–Hänchen shifts from near-field intensities: a numerical simulation,” Opt. Lett. 20, 2445–2447 (1995); A. Madrazo, N. Garcia, M. Nieto-Vesperinas, “Exact calculation of Maxwell equations for a tip–metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
    [CrossRef]
  30. E. Wolf, in Coherence and Quantum Optics, L. Mandel, E. Wolf, eds. (Plenum, New York, 1973), pp. 339–357.
  31. S. Efrima, H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. Theory,” J. Chem. Phys. 70, 1602–1613 (1979).
    [CrossRef]
  32. F. Pincemin, A. Sentenac, J. J. Greffet, “Near field scattered by a dielectric rod below a metallic surface,” J. Opt. Soc. Am. A 11, 1117–1127 (1994).
    [CrossRef]
  33. O. Keller, S. Bozhevolnyi, M. Xiao, “On the resolution limit of near-field optical microscopy,” Ref. 2, pp. 229–237.
  34. E. Betzig, “Principles and applications of near-field scanning optical microscopy (NSOM),” Ref. 2, p. 7.
  35. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
    [CrossRef]
  36. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J. J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
    [CrossRef]
  37. J. J. Greffet, A. Sentenac, R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995).
    [CrossRef]
  38. R. Carminati, J. J. Greffet, “Two-dimensional numerical simulation of the photon scanning tunneling microscope: concept of transfer function,” Opt. Commun. 116, 316–321 (1995).
    [CrossRef]
  39. J. C. Weeber, F. de Fornel, J. P. Goudonnet, “Numerical study of the tip–sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285–292 (1996).
    [CrossRef]
  40. L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
    [CrossRef]

1997 (4)

Y. Inouye, S. Kawata, “Reflection-mode near-field optical microscope with a metallic probe tip for observing fine structures in semiconductor materials,” Opt. Commun. 134, 31–35 (1997).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Imaging properties of a nanocylinder close to a surface,” J. Opt. Soc. Am. A 14, 2768–2776 (1997).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J. J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
[CrossRef]

1996 (6)

J. C. Weeber, F. de Fornel, J. P. Goudonnet, “Numerical study of the tip–sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285–292 (1996).
[CrossRef]

C. Girard, A. Dereux, “Near field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 785–795 (1996); “Reconstruction of corrugated dielectric surfaces with a model of a photon scanning tunneling microscope. Influence of the tip on the near field,” J. Opt. Soc. Am. A 14, 618–628 (1997).
[CrossRef]

M. Xiao, S. Bozhevolnyi, “Imaging with reflection near-field optical microscope: contributions of middle and far fields,” Opt. Commun. 130, 337–347 (1996).
[CrossRef]

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

A. Lahrech, R. Bachelot, P. Gleyzes, A. C. Boccara, “Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of λ/600,” Opt. Lett. 21, 1315–1317 (1996).
[CrossRef] [PubMed]

1995 (7)

R. Bachelot, P. Gleyzes, A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995).
[CrossRef] [PubMed]

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning Interferometric apertureless microscopy,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

A. Madrazo, M. Nieto-Vesperinas, “Scattering of electromagnetics waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
[CrossRef]

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

C. Girard, O. J. F. Martin, A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098–3101 (1995).
[CrossRef] [PubMed]

J. J. Greffet, A. Sentenac, R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995).
[CrossRef]

R. Carminati, J. J. Greffet, “Two-dimensional numerical simulation of the photon scanning tunneling microscope: concept of transfer function,” Opt. Commun. 116, 316–321 (1995).
[CrossRef]

1994 (8)

L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
[CrossRef]

F. Pincemin, A. Sentenac, J. J. Greffet, “Near field scattered by a dielectric rod below a metallic surface,” J. Opt. Soc. Am. A 11, 1117–1127 (1994).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994); A. Madrazo, M. Nieto-Vesperinas, “Detection of subwavelength Goos–Hänchen shifts from near-field intensities: a numerical simulation,” Opt. Lett. 20, 2445–2447 (1995); A. Madrazo, N. Garcia, M. Nieto-Vesperinas, “Exact calculation of Maxwell equations for a tip–metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

F. Zenhausern, M. P. O’Boyle, K. H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[CrossRef] [PubMed]

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser traped probe,” Jpn. J. Appl. Phys. 33, 1725–1727 (1994).
[CrossRef]

C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14,467–14,473 (1994).
[CrossRef]

C. Girard, A. Dereux, “Optical spectroscopy of a surface at the nanometer scale: a theoretical study in real space,” Phys. Rev. B 49, 11,344–11,351 (1994).
[CrossRef]

1993 (3)

D. Van Labeke, D. Barchiesi, “Probes for scanning tunneling optical microscopy: a theoretical comparison,” J. Opt. Soc. Am. A 10, 2193–2201 (1993).
[CrossRef]

D. Barchiesi, D. Van Labeke, “Application of Mie scattering of evanescent waves to scanning tunneling optical microscopy theory,” J. Mod. Opt. 40, 1239–1254 (1993).
[CrossRef]

N. F. van Hulst, M. H. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62, 461–463 (1993).
[CrossRef]

1992 (2)

M. Specht, J. D. Pedarning, W. M. Heckl, T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

D. Van Labeke, D. Barchiesi, “Scanning-tunneling optical microscopy: a theoretical macroscopic approach,” J. Opt. Soc. Am. A 9, 732–739 (1992).
[CrossRef]

1991 (1)

W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,” J. Vac. Sci. Technol. B 9, 510–513 (1991).
[CrossRef]

1989 (1)

1979 (1)

S. Efrima, H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. Theory,” J. Chem. Phys. 70, 1602–1613 (1979).
[CrossRef]

Bachelot, R.

Barchiesi, D.

Bielefeldt, H.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Boccara, A. C.

Bölger, B.

N. F. van Hulst, M. H. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62, 461–463 (1993).
[CrossRef]

Bozhevolnyi, S.

M. Xiao, S. Bozhevolnyi, “Imaging with reflection near-field optical microscope: contributions of middle and far fields,” Opt. Commun. 130, 337–347 (1996).
[CrossRef]

Carminati, R.

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J. J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
[CrossRef]

J. J. Greffet, A. Sentenac, R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995).
[CrossRef]

R. Carminati, J. J. Greffet, “Two-dimensional numerical simulation of the photon scanning tunneling microscope: concept of transfer function,” Opt. Commun. 116, 316–321 (1995).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994); A. Madrazo, M. Nieto-Vesperinas, “Detection of subwavelength Goos–Hänchen shifts from near-field intensities: a numerical simulation,” Opt. Lett. 20, 2445–2447 (1995); A. Madrazo, N. Garcia, M. Nieto-Vesperinas, “Exact calculation of Maxwell equations for a tip–metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

Courjon, D.

de Fornel, F.

J. C. Weeber, F. de Fornel, J. P. Goudonnet, “Numerical study of the tip–sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285–292 (1996).
[CrossRef]

Denk, W.

W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,” J. Vac. Sci. Technol. B 9, 510–513 (1991).
[CrossRef]

Dereux, A.

C. Girard, A. Dereux, “Near field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

C. Girard, O. J. F. Martin, A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098–3101 (1995).
[CrossRef] [PubMed]

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

C. Girard, A. Dereux, “Optical spectroscopy of a surface at the nanometer scale: a theoretical study in real space,” Phys. Rev. B 49, 11,344–11,351 (1994).
[CrossRef]

C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14,467–14,473 (1994).
[CrossRef]

Devel, M.

C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14,467–14,473 (1994).
[CrossRef]

Efrima, S.

S. Efrima, H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. Theory,” J. Chem. Phys. 70, 1602–1613 (1979).
[CrossRef]

Girard, C.

C. Girard, A. Dereux, “Near field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

C. Girard, O. J. F. Martin, A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098–3101 (1995).
[CrossRef] [PubMed]

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14,467–14,473 (1994).
[CrossRef]

C. Girard, A. Dereux, “Optical spectroscopy of a surface at the nanometer scale: a theoretical study in real space,” Phys. Rev. B 49, 11,344–11,351 (1994).
[CrossRef]

J. M. Vigoureux, C. Girard, D. Courjon, “General principles of scanning tunneling optical microscopy,” Opt. Lett. 14, 1039–1041 (1989).
[CrossRef] [PubMed]

Gleyzes, P.

Goudonnet, J. P.

J. C. Weeber, F. de Fornel, J. P. Goudonnet, “Numerical study of the tip–sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285–292 (1996).
[CrossRef]

Greffet, J. J.

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J. J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
[CrossRef]

J. J. Greffet, A. Sentenac, R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995).
[CrossRef]

R. Carminati, J. J. Greffet, “Two-dimensional numerical simulation of the photon scanning tunneling microscope: concept of transfer function,” Opt. Commun. 116, 316–321 (1995).
[CrossRef]

F. Pincemin, A. Sentenac, J. J. Greffet, “Near field scattered by a dielectric rod below a metallic surface,” J. Opt. Soc. Am. A 11, 1117–1127 (1994).
[CrossRef]

Hänsch, T. W.

M. Specht, J. D. Pedarning, W. M. Heckl, T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

Hecht, B.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Heckl, W. M.

M. Specht, J. D. Pedarning, W. M. Heckl, T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

Inouye, Y.

Y. Inouye, S. Kawata, “Reflection-mode near-field optical microscope with a metallic probe tip for observing fine structures in semiconductor materials,” Opt. Commun. 134, 31–35 (1997).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[CrossRef] [PubMed]

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser traped probe,” Jpn. J. Appl. Phys. 33, 1725–1727 (1994).
[CrossRef]

Kawata, S.

Y. Inouye, S. Kawata, “Reflection-mode near-field optical microscope with a metallic probe tip for observing fine structures in semiconductor materials,” Opt. Commun. 134, 31–35 (1997).
[CrossRef]

Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[CrossRef] [PubMed]

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser traped probe,” Jpn. J. Appl. Phys. 33, 1725–1727 (1994).
[CrossRef]

Lahrech, A.

Madrazo, A.

A. Madrazo, M. Nieto-Vesperinas, “Imaging properties of a nanocylinder close to a surface,” J. Opt. Soc. Am. A 14, 2768–2776 (1997).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J. J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 785–795 (1996); “Reconstruction of corrugated dielectric surfaces with a model of a photon scanning tunneling microscope. Influence of the tip on the near field,” J. Opt. Soc. Am. A 14, 618–628 (1997).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Scattering of electromagnetics waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994); A. Madrazo, M. Nieto-Vesperinas, “Detection of subwavelength Goos–Hänchen shifts from near-field intensities: a numerical simulation,” Opt. Lett. 20, 2445–2447 (1995); A. Madrazo, N. Garcia, M. Nieto-Vesperinas, “Exact calculation of Maxwell equations for a tip–metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

Martin, O. J. F.

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

C. Girard, O. J. F. Martin, A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098–3101 (1995).
[CrossRef] [PubMed]

C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14,467–14,473 (1994).
[CrossRef]

Martin, Y.

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning Interferometric apertureless microscopy,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Metiu, H.

S. Efrima, H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. Theory,” J. Chem. Phys. 70, 1602–1613 (1979).
[CrossRef]

Moers, M. H.

N. F. van Hulst, M. H. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62, 461–463 (1993).
[CrossRef]

Nieto-Vesperinas, M.

A. Madrazo, M. Nieto-Vesperinas, “Imaging properties of a nanocylinder close to a surface,” J. Opt. Soc. Am. A 14, 2768–2776 (1997).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J. J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 785–795 (1996); “Reconstruction of corrugated dielectric surfaces with a model of a photon scanning tunneling microscope. Influence of the tip on the near field,” J. Opt. Soc. Am. A 14, 618–628 (1997).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Scattering of electromagnetics waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994); A. Madrazo, M. Nieto-Vesperinas, “Detection of subwavelength Goos–Hänchen shifts from near-field intensities: a numerical simulation,” Opt. Lett. 20, 2445–2447 (1995); A. Madrazo, N. Garcia, M. Nieto-Vesperinas, “Exact calculation of Maxwell equations for a tip–metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991), Chap. 2, p. 52.

Noordman, O. F. J.

N. F. van Hulst, M. H. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62, 461–463 (1993).
[CrossRef]

Novotny, L.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
[CrossRef]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, K. H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Pedarning, J. D.

M. Specht, J. D. Pedarning, W. M. Heckl, T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

Pincemin, F.

Pohl, D. W.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
[CrossRef]

W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,” J. Vac. Sci. Technol. B 9, 510–513 (1991).
[CrossRef]

D. W. Pohl, “Scanning near-field optical microscopy,” in Advances in Optical and Electron Microscopy, J. R. Sheppard, T. Mulvey, eds. (Academic, New York, 1991), pp. 243–311.

Regli, P.

Segerink, F. B.

N. F. van Hulst, M. H. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62, 461–463 (1993).
[CrossRef]

Sentenac, A.

J. J. Greffet, A. Sentenac, R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995).
[CrossRef]

F. Pincemin, A. Sentenac, J. J. Greffet, “Near field scattered by a dielectric rod below a metallic surface,” J. Opt. Soc. Am. A 11, 1117–1127 (1994).
[CrossRef]

Specht, M.

M. Specht, J. D. Pedarning, W. M. Heckl, T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

Sugiura, T.

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser traped probe,” Jpn. J. Appl. Phys. 33, 1725–1727 (1994).
[CrossRef]

Tack, R. G.

N. F. van Hulst, M. H. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62, 461–463 (1993).
[CrossRef]

van Hulst, N. F.

N. F. van Hulst, M. H. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62, 461–463 (1993).
[CrossRef]

Van Labeke, D.

Vigoureux, J. M.

Weeber, J. C.

J. C. Weeber, F. de Fornel, J. P. Goudonnet, “Numerical study of the tip–sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285–292 (1996).
[CrossRef]

Wickramasinghe, H. K.

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning Interferometric apertureless microscopy,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Wickramasinghe, K. H.

F. Zenhausern, M. P. O’Boyle, K. H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Wolf, E.

E. Wolf, in Coherence and Quantum Optics, L. Mandel, E. Wolf, eds. (Plenum, New York, 1973), pp. 339–357.

Xiao, M.

M. Xiao, S. Bozhevolnyi, “Imaging with reflection near-field optical microscope: contributions of middle and far fields,” Opt. Commun. 130, 337–347 (1996).
[CrossRef]

Zenhausern, F.

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning Interferometric apertureless microscopy,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

F. Zenhausern, M. P. O’Boyle, K. H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Appl. Phys. Lett. (3)

N. F. van Hulst, M. H. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62, 461–463 (1993).
[CrossRef]

F. Zenhausern, M. P. O’Boyle, K. H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

J. Appl. Phys. (2)

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, J. J. Greffet, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
[CrossRef]

J. Chem. Phys. (1)

S. Efrima, H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. Theory,” J. Chem. Phys. 70, 1602–1613 (1979).
[CrossRef]

J. Mod. Opt. (1)

D. Barchiesi, D. Van Labeke, “Application of Mie scattering of evanescent waves to scanning tunneling optical microscopy theory,” J. Mod. Opt. 40, 1239–1254 (1993).
[CrossRef]

J. Opt. Soc. Am. A (7)

D. Van Labeke, D. Barchiesi, “Probes for scanning tunneling optical microscopy: a theoretical comparison,” J. Opt. Soc. Am. A 10, 2193–2201 (1993).
[CrossRef]

D. Van Labeke, D. Barchiesi, “Scanning-tunneling optical microscopy: a theoretical macroscopic approach,” J. Opt. Soc. Am. A 9, 732–739 (1992).
[CrossRef]

F. Pincemin, A. Sentenac, J. J. Greffet, “Near field scattered by a dielectric rod below a metallic surface,” J. Opt. Soc. Am. A 11, 1117–1127 (1994).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Imaging properties of a nanocylinder close to a surface,” J. Opt. Soc. Am. A 14, 2768–2776 (1997).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Scattering of electromagnetics waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 785–795 (1996); “Reconstruction of corrugated dielectric surfaces with a model of a photon scanning tunneling microscope. Influence of the tip on the near field,” J. Opt. Soc. Am. A 14, 618–628 (1997).
[CrossRef]

L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
[CrossRef]

J. Vac. Sci. Technol. B (1)

W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,” J. Vac. Sci. Technol. B 9, 510–513 (1991).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser traped probe,” Jpn. J. Appl. Phys. 33, 1725–1727 (1994).
[CrossRef]

Opt. Commun. (6)

Y. Inouye, S. Kawata, “Reflection-mode near-field optical microscope with a metallic probe tip for observing fine structures in semiconductor materials,” Opt. Commun. 134, 31–35 (1997).
[CrossRef]

M. Xiao, S. Bozhevolnyi, “Imaging with reflection near-field optical microscope: contributions of middle and far fields,” Opt. Commun. 130, 337–347 (1996).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994); A. Madrazo, M. Nieto-Vesperinas, “Detection of subwavelength Goos–Hänchen shifts from near-field intensities: a numerical simulation,” Opt. Lett. 20, 2445–2447 (1995); A. Madrazo, N. Garcia, M. Nieto-Vesperinas, “Exact calculation of Maxwell equations for a tip–metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

J. J. Greffet, A. Sentenac, R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995).
[CrossRef]

R. Carminati, J. J. Greffet, “Two-dimensional numerical simulation of the photon scanning tunneling microscope: concept of transfer function,” Opt. Commun. 116, 316–321 (1995).
[CrossRef]

J. C. Weeber, F. de Fornel, J. P. Goudonnet, “Numerical study of the tip–sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285–292 (1996).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. B (2)

C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14,467–14,473 (1994).
[CrossRef]

C. Girard, A. Dereux, “Optical spectroscopy of a surface at the nanometer scale: a theoretical study in real space,” Phys. Rev. B 49, 11,344–11,351 (1994).
[CrossRef]

Phys. Rev. Lett. (3)

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

C. Girard, O. J. F. Martin, A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75, 3098–3101 (1995).
[CrossRef] [PubMed]

M. Specht, J. D. Pedarning, W. M. Heckl, T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

C. Girard, A. Dereux, “Near field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

Science (1)

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning Interferometric apertureless microscopy,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Other (7)

D. W. Pohl, “Scanning near-field optical microscopy,” in Advances in Optical and Electron Microscopy, J. R. Sheppard, T. Mulvey, eds. (Academic, New York, 1991), pp. 243–311.

D. W. Pohl, D. Courjon, eds., Near-Field Optics, Vol. 242 of NATO ASI Series E (Kluwer, Dordrecht, The Netherlands, 1993).

M. Nieto-Vesperinas, N. Garcı́a, eds., Optics at the Nanometer Scale, Vol. 319 of NATO ASI Series E (Kluwer, Dordrecht, The Netherlands, 1996).

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991), Chap. 2, p. 52.

E. Wolf, in Coherence and Quantum Optics, L. Mandel, E. Wolf, eds. (Plenum, New York, 1973), pp. 339–357.

O. Keller, S. Bozhevolnyi, M. Xiao, “On the resolution limit of near-field optical microscopy,” Ref. 2, pp. 229–237.

E. Betzig, “Principles and applications of near-field scanning optical microscopy (NSOM),” Ref. 2, p. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematics of (a) the tip acting as a nanodetector and (b) the tip acting as a nanosource. (c) 2-D scattering geometry.

Fig. 2
Fig. 2

Dependence of the magnitude Φ=|E|2/|E0|2 on the cylinder–sample distance. s polarization, θ0=50°. 1 =2.12. The cylinder radius is R=0.01λ, and several cylinder optical constant are used: 2=2.12 (solid curves), 2=4.5 (long-dashed curves), and 2=(-9.89, 1.05) (short-dashed curves).

Fig. 3
Fig. 3

Same as Fig. 2 but for p polarization. The triangles mark the threshold distance that separates the two optical regimes (see text for details).

Fig. 4
Fig. 4

Same as Fig. 3 but now the permittivity of the cylinder is fixed to 2=4.5. Two values of the sample dielectric constant are used: 1=2.12 and 1=4.5.

Fig. 5
Fig. 5

Comparison between (a) the near-field intensity at z0 =0.07λ in absence of the cylinder and (b) the intensity inside a gold cylinder [2=(-9.89, 1.05)] with radius R=0.01λ when it scans the surface with its center along the line d+R=0.07λ. Surface parameters are h=0.05λ, x0=0.05λ, and σ=0.02λ. The angle of incidence is θ0=0°, and the incident wave is p polarized. The intensity distributions of the two components of the electric field |Ex|2 (solid curves) and |Ez|2 (dashed curves) are shown. The figures at the tops of (a) and (b) show the sample profiles (solid curves) as well as the paths followed by the cylinders (dashed lines).

Fig. 6
Fig. 6

Same as Fig. 5 but for θ0=50°.

Fig. 7
Fig. 7

Intensity distribution in a tungsten cylinder [2 =(4.8, 21.2)]. Other parameters as in Fig. 6. |Ex|2, solid curves; |Ez|2, dashed curves. (a) θ0=0°, (b) θ0=50°.

Fig. 8
Fig. 8

Near-field intensity along the line z0=0.012λ when a gold cylinder of radius R=0.01λ is placed with its center at point rtip=(0, 0.023λ). Solid curves, |Ex|2; dashed curves, |Ez|2. (a) Flat substrate, 1=4.5; (b) sample with corrugation, with parameters 1=4.5, h=0.01λ, x0=0.03λ, and σ =0.01λ. p polarization, θ0=50°. The insets show the intensity distributions just below the cylinder on an amplified x scale.

Fig. 9
Fig. 9

Far field scattered by a cylinder [R=0.01λ, 2=(-9.89, 1.05)] at several scattering angles θs when it scans the surface at a constant height d+R=0.07λ. Surface parameters 1=2.12, h=0.05λ, x0=0.05λ, and σ=0.02λ. p polarization. (a) θ0 =0°, (b) θ0=50°.

Fig. 10
Fig. 10

Numerical calculations as the cylinder [R=0.01λ, 2=(-9.89, 1.05)] scans the surface at a constant height d+R =0.017λ. From left to right, top to bottom, far-field intensity scattered by the whole system (tip plus surface), |E(r, K)|2 [dashed curves in (a), (c), and (e)]; by the surface, |qT1(K)|2 [solid curves in (a), (c), and (e)]; and by the cylinder, |qT2(K)|2 [solid curves in (b), (d), and (f)]. Surface parameters 1=2.12, h=0.005λ, x0=0.03λ, and σ=0.01λ. p polarization, θ0=50°. Left column, θs=0°; central column, θs=50°; right column, θs=90°.

Fig. 11
Fig. 11

Same as Fig. 10 but for 1=16.

Fig. 12
Fig. 12

Far-field intensity dependence on tip–sample distance. Surface parameters as in Fig. 11. The lateral position of the cylinder is xtip=0. R=0.01λ. The magnitude, d log Ii(K)/dz, (Ii=|qTi(K)|2, i=1, 2) is shown. Left to right, top to bottom, d log I1(K)/dz [(a), (c), and (e)] and d log I2(K)/dz [(b), (d), and (f)]. p polarization, θ0=50°. Solid line curves, 1=16; dashed curves, 1=2.12. Left column, θs=0°; central column, θs=50°; right column, θs=90°.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E(r, K)=iq[T1(K)+T2(K)]exp(ikr)r,
T1(K)=14πk2(q, 0, -K)A1(K),
T2(K)=14πk2(q, 0, -K)A2(K),
A1(K)=Dds(n·k)H(r)-iH(r)n×exp[-i(Kx+qz)],
A2(K)=Cds(n·k)H(r)-iH(r)n×exp[-i(Kx+qz)],
T2(K)=i4πq(q, 0, -K)Vtipdr[2(r)-1]×[Ecyl(r)·(-q, 0, K)]exp[-i(Kx+qz)],
T2(K)=iq(q, 0, -K)exp[-i(Kxtip+qztip)]×[αeff(rtip)E(rtip)·(-q, 0, K)],
αeffxx=α1-1-11+1α8πztip2,αeffzz=α1-1-11+1α4πztip2,

Metrics