Abstract

As is well known, dark adaption in the human visual system is much slower than is recovery from darkness. We show that at high photopic luminances the situation is exactly opposite. First, we study detection thresholds for a small light flash, at various delays from decrement and increment steps in background luminance. Light adaptation is nearly complete within 100 ms after luminance decrements but takes much longer after luminance increments. Second, we compare sensitivity after equally visible pulses or steps in the adaptation luminance and find that flash detectability is initially the same but recovers much faster for pulses than for increment steps. This suggests that, whereas any residual threshold elevation after a step shows the incomplete luminance adaptation, the initial threshold elevation is caused by the temporal contrast of the background steps and pulses. This hypothesis is further substantiated in a third experiment, whereby we show that manipulating the contrast of a transition between luminances affects only the initial part of the threshold curve, and not later stages.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. van Hateren, “Spatiotemporal contrast sensitivity of early vision,” Vision Res. 33, 257–267 (1993).
    [CrossRef] [PubMed]
  2. W. A. Richards, “Lightness scale from image intensity distributions,” Appl. Opt. 21, 2569–2582 (1982).
    [CrossRef] [PubMed]
  3. J. H. van Hateren, A. van der Schaaf, “Temporal properties of natural scenes,” in Human Vision and Electronic Imaging, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE2657, 139–143 (1996).
    [CrossRef]
  4. S. B. Laughlin, J. Howard, B. Blakeslee, “Synaptic limitations to contrast coding in the retina of the blowfly Calliphora,” Proc. R. Soc. London Ser. B 231, 437–467 (1987).
    [CrossRef]
  5. M. Juusola, R. O. Uusitalo, M. Weckström, “Transfer of graded potentials at the photoreceptor–interneuron synapse,” J. Gen. Physiol. 105, 117–148 (1995).
    [CrossRef] [PubMed]
  6. B. H. Crawford, “Visual adaptation in relation to brief conditioning stimuli,” Proc. R. Soc. London 134, 283–302 (1947).
    [PubMed]
  7. W. R. Bush, “Foveal light adaptation as affected by the spectral composition of the test and adapting stimuli,” J. Opt. Soc. Am. 45, 1047–1057 (1955).
    [CrossRef] [PubMed]
  8. T. E. von Wiegand, D. C. Hood, N. Graham, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
    [CrossRef] [PubMed]
  9. S. Hecht, “Rods, cones and the chemical basis of vision,” Physiol. Rev. 17, 239–290 (1937).
  10. W. A. H. Rushton, “Visual adaptation,” Proc. R. Soc. London Ser. B 162, 20–46 (1965).
    [CrossRef]
  11. R. M. Boynton, G. Kandel, “On responses in the human visual system as a function of adaptation level,” J. Opt. Soc. Am. 47, 275–286 (1957).
    [CrossRef] [PubMed]
  12. W. S. Battersby, I. H. Wagman, “Neural limitations to visual excitability. I. The time course of monocular light adaptation,” J. Opt. Soc. Am. 49, 752–759 (1959).
    [CrossRef] [PubMed]
  13. M. M. Hayhoe, M. E. Levin, R. J. Koshel, “Subtractive processes in light adaptation,” Vision Res. 32, 323–333 (1992).
    [CrossRef] [PubMed]
  14. P. T. Kortum, W. S. Geisler, “Adaptation mechanisms in spatial vision. II. Flash thresholds and background adaptation,” Vision Res. 35, 1595–1605 (1995).
    [CrossRef] [PubMed]
  15. H. D. Baker, M. D. Doran, K. E. Miller, “Early dark adaptation to dim luminances,” J. Opt. Soc. Am. 49, 1065–1070 (1959).
    [CrossRef] [PubMed]
  16. R. M. Boynton, N. D. Miller, “Visual performance under conditions of transient adaptation,” Illum. Eng. (NY) 58, 541–550 (1963).
  17. G. Sperling, “Temporal and spatial visual masking. I. Masking by impulse flashes,” J. Opt. Soc. Am. 55, 541–559 (1965).
    [CrossRef]
  18. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
    [CrossRef] [PubMed]
  19. D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).
  20. D. M. Green, “Stimulus selection in adaptive psychophysical procedures,” J. Acoust. Soc. Am. 87, 2662–2674 (1990).
    [CrossRef] [PubMed]
  21. W. S. Geisler, “Evidence for the equivalent-background hypothesis in cones,” Vision Res. 19, 799–805 (1979).
    [CrossRef] [PubMed]
  22. D. H. Kelly, R. E. Savoie, “Theory of flicker and transient responses. III. An essential nonlinearity,” J. Opt. Soc. Am. 68, 1481–1490 (1978).
    [CrossRef] [PubMed]
  23. A. Gorea, C. W. Tyler, “New look at Bloch’s law for contrast,” J. Opt. Soc. Am. A 3, 52–61 (1986).
    [CrossRef] [PubMed]
  24. S. J. Waugh, D. M. Levi, “Visibility, timing and vernier acuity,” Vision Res. 33, 505–526 (1993).
    [CrossRef] [PubMed]
  25. J. Thorson, M. Biederman-Thorson, “Distributed relaxation processes in sensory adaptation,” Science 183, 161–172 (1974).
    [CrossRef] [PubMed]
  26. D. Rose, I. Lowe, “Dynamics of adaptation to contrast,” Perception 11, 505–528 (1982).
    [PubMed]
  27. D. Rose, R. Evans, “Evidence against saturation of contrast adaptation in the human visual system,” Percept. Psychophys. 34, 158–160 (1983).
    [CrossRef] [PubMed]
  28. M. W. Greenlee, M. A. Georgeson, S. Magnussen, J. P. Harris, “The time course of adaptation to spatial contrast,” Vision Res. 31, 223–236 (1991).
    [CrossRef] [PubMed]
  29. J. M. Foley, G. M. Boynton, “Forward pattern masking and adaptation: effects of duration, interstimulus interval, contrast, and spatial and temporal frequency,” Vision Res. 33, 959–980 (1993).
    [CrossRef] [PubMed]
  30. R. W. Bowen, H. R. Wilson, “A two-process analysis of pattern masking,” Vision Res. 34, 645–657 (1994).
    [CrossRef] [PubMed]
  31. R. W. Bowen, “Isolation and interaction of ON and OFF pathways in human vision: contrast discrimination at pattern offset,” Vision Res. 37, 185–198 (1997).
    [CrossRef] [PubMed]
  32. T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
    [CrossRef] [PubMed]
  33. E. J. Chichilnisky, B. A. Wandell, “Seeing gray through the ON and OFF pathways,” Visual Neurosci. 13, 591–596 (1996).
    [PubMed]
  34. P. H. Schiller, J. H. Sandell, J. H. R. Maunsell, “Functions of the ON and OFF channels of the visual system,” Nature 322, 824–825 (1986).
    [PubMed]
  35. G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
    [CrossRef] [PubMed]
  36. W. H. Merigan, J. H. R. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
    [CrossRef] [PubMed]
  37. Y. Chen, H. E. Bedell, L. J. Frishman, “Temporal-contrast discrimination and its neural correlates,” Perception 25, 505–522 (1996).
  38. G. E. Legge, J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
    [CrossRef] [PubMed]
  39. N. Graham, D. C. Hood, “Modeling the dynamics of light adaptation: the merging of two traditions,” Vision Res. 32, 1373–1393 (1992).
    [CrossRef] [PubMed]

1997 (1)

R. W. Bowen, “Isolation and interaction of ON and OFF pathways in human vision: contrast discrimination at pattern offset,” Vision Res. 37, 185–198 (1997).
[CrossRef] [PubMed]

1996 (3)

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[CrossRef] [PubMed]

E. J. Chichilnisky, B. A. Wandell, “Seeing gray through the ON and OFF pathways,” Visual Neurosci. 13, 591–596 (1996).
[PubMed]

Y. Chen, H. E. Bedell, L. J. Frishman, “Temporal-contrast discrimination and its neural correlates,” Perception 25, 505–522 (1996).

1995 (3)

M. Juusola, R. O. Uusitalo, M. Weckström, “Transfer of graded potentials at the photoreceptor–interneuron synapse,” J. Gen. Physiol. 105, 117–148 (1995).
[CrossRef] [PubMed]

T. E. von Wiegand, D. C. Hood, N. Graham, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef] [PubMed]

P. T. Kortum, W. S. Geisler, “Adaptation mechanisms in spatial vision. II. Flash thresholds and background adaptation,” Vision Res. 35, 1595–1605 (1995).
[CrossRef] [PubMed]

1994 (1)

R. W. Bowen, H. R. Wilson, “A two-process analysis of pattern masking,” Vision Res. 34, 645–657 (1994).
[CrossRef] [PubMed]

1993 (4)

J. M. Foley, G. M. Boynton, “Forward pattern masking and adaptation: effects of duration, interstimulus interval, contrast, and spatial and temporal frequency,” Vision Res. 33, 959–980 (1993).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, “Visibility, timing and vernier acuity,” Vision Res. 33, 505–526 (1993).
[CrossRef] [PubMed]

J. H. van Hateren, “Spatiotemporal contrast sensitivity of early vision,” Vision Res. 33, 257–267 (1993).
[CrossRef] [PubMed]

W. H. Merigan, J. H. R. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef] [PubMed]

1992 (2)

N. Graham, D. C. Hood, “Modeling the dynamics of light adaptation: the merging of two traditions,” Vision Res. 32, 1373–1393 (1992).
[CrossRef] [PubMed]

M. M. Hayhoe, M. E. Levin, R. J. Koshel, “Subtractive processes in light adaptation,” Vision Res. 32, 323–333 (1992).
[CrossRef] [PubMed]

1991 (1)

M. W. Greenlee, M. A. Georgeson, S. Magnussen, J. P. Harris, “The time course of adaptation to spatial contrast,” Vision Res. 31, 223–236 (1991).
[CrossRef] [PubMed]

1990 (2)

G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[CrossRef] [PubMed]

D. M. Green, “Stimulus selection in adaptive psychophysical procedures,” J. Acoust. Soc. Am. 87, 2662–2674 (1990).
[CrossRef] [PubMed]

1987 (1)

S. B. Laughlin, J. Howard, B. Blakeslee, “Synaptic limitations to contrast coding in the retina of the blowfly Calliphora,” Proc. R. Soc. London Ser. B 231, 437–467 (1987).
[CrossRef]

1986 (2)

A. Gorea, C. W. Tyler, “New look at Bloch’s law for contrast,” J. Opt. Soc. Am. A 3, 52–61 (1986).
[CrossRef] [PubMed]

P. H. Schiller, J. H. Sandell, J. H. R. Maunsell, “Functions of the ON and OFF channels of the visual system,” Nature 322, 824–825 (1986).
[PubMed]

1983 (1)

D. Rose, R. Evans, “Evidence against saturation of contrast adaptation in the human visual system,” Percept. Psychophys. 34, 158–160 (1983).
[CrossRef] [PubMed]

1982 (2)

D. Rose, I. Lowe, “Dynamics of adaptation to contrast,” Perception 11, 505–528 (1982).
[PubMed]

W. A. Richards, “Lightness scale from image intensity distributions,” Appl. Opt. 21, 2569–2582 (1982).
[CrossRef] [PubMed]

1980 (1)

1979 (1)

W. S. Geisler, “Evidence for the equivalent-background hypothesis in cones,” Vision Res. 19, 799–805 (1979).
[CrossRef] [PubMed]

1978 (1)

1974 (1)

J. Thorson, M. Biederman-Thorson, “Distributed relaxation processes in sensory adaptation,” Science 183, 161–172 (1974).
[CrossRef] [PubMed]

1966 (1)

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

1965 (2)

1963 (1)

R. M. Boynton, N. D. Miller, “Visual performance under conditions of transient adaptation,” Illum. Eng. (NY) 58, 541–550 (1963).

1959 (2)

1957 (1)

1955 (1)

1947 (1)

B. H. Crawford, “Visual adaptation in relation to brief conditioning stimuli,” Proc. R. Soc. London 134, 283–302 (1947).
[PubMed]

1937 (1)

S. Hecht, “Rods, cones and the chemical basis of vision,” Physiol. Rev. 17, 239–290 (1937).

Baker, H. D.

Battersby, W. S.

Bedell, H. E.

Y. Chen, H. E. Bedell, L. J. Frishman, “Temporal-contrast discrimination and its neural correlates,” Perception 25, 505–522 (1996).

Biederman-Thorson, M.

J. Thorson, M. Biederman-Thorson, “Distributed relaxation processes in sensory adaptation,” Science 183, 161–172 (1974).
[CrossRef] [PubMed]

Blakeslee, B.

S. B. Laughlin, J. Howard, B. Blakeslee, “Synaptic limitations to contrast coding in the retina of the blowfly Calliphora,” Proc. R. Soc. London Ser. B 231, 437–467 (1987).
[CrossRef]

Bowen, R. W.

R. W. Bowen, “Isolation and interaction of ON and OFF pathways in human vision: contrast discrimination at pattern offset,” Vision Res. 37, 185–198 (1997).
[CrossRef] [PubMed]

R. W. Bowen, H. R. Wilson, “A two-process analysis of pattern masking,” Vision Res. 34, 645–657 (1994).
[CrossRef] [PubMed]

Boynton, G. M.

J. M. Foley, G. M. Boynton, “Forward pattern masking and adaptation: effects of duration, interstimulus interval, contrast, and spatial and temporal frequency,” Vision Res. 33, 959–980 (1993).
[CrossRef] [PubMed]

Boynton, R. M.

R. M. Boynton, N. D. Miller, “Visual performance under conditions of transient adaptation,” Illum. Eng. (NY) 58, 541–550 (1963).

R. M. Boynton, G. Kandel, “On responses in the human visual system as a function of adaptation level,” J. Opt. Soc. Am. 47, 275–286 (1957).
[CrossRef] [PubMed]

Bush, W. R.

Chen, Y.

Y. Chen, H. E. Bedell, L. J. Frishman, “Temporal-contrast discrimination and its neural correlates,” Perception 25, 505–522 (1996).

Chichilnisky, E. J.

E. J. Chichilnisky, B. A. Wandell, “Seeing gray through the ON and OFF pathways,” Visual Neurosci. 13, 591–596 (1996).
[PubMed]

Crawford, B. H.

B. H. Crawford, “Visual adaptation in relation to brief conditioning stimuli,” Proc. R. Soc. London 134, 283–302 (1947).
[PubMed]

Doran, M. D.

Evans, R.

D. Rose, R. Evans, “Evidence against saturation of contrast adaptation in the human visual system,” Percept. Psychophys. 34, 158–160 (1983).
[CrossRef] [PubMed]

Foley, J. M.

J. M. Foley, G. M. Boynton, “Forward pattern masking and adaptation: effects of duration, interstimulus interval, contrast, and spatial and temporal frequency,” Vision Res. 33, 959–980 (1993).
[CrossRef] [PubMed]

G. E. Legge, J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
[CrossRef] [PubMed]

Frishman, L. J.

Y. Chen, H. E. Bedell, L. J. Frishman, “Temporal-contrast discrimination and its neural correlates,” Perception 25, 505–522 (1996).

Geisler, W. S.

P. T. Kortum, W. S. Geisler, “Adaptation mechanisms in spatial vision. II. Flash thresholds and background adaptation,” Vision Res. 35, 1595–1605 (1995).
[CrossRef] [PubMed]

W. S. Geisler, “Evidence for the equivalent-background hypothesis in cones,” Vision Res. 19, 799–805 (1979).
[CrossRef] [PubMed]

Georgeson, M. A.

M. W. Greenlee, M. A. Georgeson, S. Magnussen, J. P. Harris, “The time course of adaptation to spatial contrast,” Vision Res. 31, 223–236 (1991).
[CrossRef] [PubMed]

Gorea, A.

Graham, N.

T. E. von Wiegand, D. C. Hood, N. Graham, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef] [PubMed]

N. Graham, D. C. Hood, “Modeling the dynamics of light adaptation: the merging of two traditions,” Vision Res. 32, 1373–1393 (1992).
[CrossRef] [PubMed]

Green, D. M.

D. M. Green, “Stimulus selection in adaptive psychophysical procedures,” J. Acoust. Soc. Am. 87, 2662–2674 (1990).
[CrossRef] [PubMed]

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

Greenlee, M. W.

M. W. Greenlee, M. A. Georgeson, S. Magnussen, J. P. Harris, “The time course of adaptation to spatial contrast,” Vision Res. 31, 223–236 (1991).
[CrossRef] [PubMed]

Harris, J. P.

M. W. Greenlee, M. A. Georgeson, S. Magnussen, J. P. Harris, “The time course of adaptation to spatial contrast,” Vision Res. 31, 223–236 (1991).
[CrossRef] [PubMed]

Hayhoe, M. M.

M. M. Hayhoe, M. E. Levin, R. J. Koshel, “Subtractive processes in light adaptation,” Vision Res. 32, 323–333 (1992).
[CrossRef] [PubMed]

Hecht, S.

S. Hecht, “Rods, cones and the chemical basis of vision,” Physiol. Rev. 17, 239–290 (1937).

Hood, D. C.

T. E. von Wiegand, D. C. Hood, N. Graham, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef] [PubMed]

N. Graham, D. C. Hood, “Modeling the dynamics of light adaptation: the merging of two traditions,” Vision Res. 32, 1373–1393 (1992).
[CrossRef] [PubMed]

Howard, J.

S. B. Laughlin, J. Howard, B. Blakeslee, “Synaptic limitations to contrast coding in the retina of the blowfly Calliphora,” Proc. R. Soc. London Ser. B 231, 437–467 (1987).
[CrossRef]

Juusola, M.

M. Juusola, R. O. Uusitalo, M. Weckström, “Transfer of graded potentials at the photoreceptor–interneuron synapse,” J. Gen. Physiol. 105, 117–148 (1995).
[CrossRef] [PubMed]

Kandel, G.

Kelly, D. H.

Kortum, P. T.

P. T. Kortum, W. S. Geisler, “Adaptation mechanisms in spatial vision. II. Flash thresholds and background adaptation,” Vision Res. 35, 1595–1605 (1995).
[CrossRef] [PubMed]

Koshel, R. J.

M. M. Hayhoe, M. E. Levin, R. J. Koshel, “Subtractive processes in light adaptation,” Vision Res. 32, 323–333 (1992).
[CrossRef] [PubMed]

Kremers, J.

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[CrossRef] [PubMed]

Laughlin, S. B.

S. B. Laughlin, J. Howard, B. Blakeslee, “Synaptic limitations to contrast coding in the retina of the blowfly Calliphora,” Proc. R. Soc. London Ser. B 231, 437–467 (1987).
[CrossRef]

Lee, B. B.

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[CrossRef] [PubMed]

Legge, G. E.

Lennie, P.

G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[CrossRef] [PubMed]

Levi, D. M.

S. J. Waugh, D. M. Levi, “Visibility, timing and vernier acuity,” Vision Res. 33, 505–526 (1993).
[CrossRef] [PubMed]

Levin, M. E.

M. M. Hayhoe, M. E. Levin, R. J. Koshel, “Subtractive processes in light adaptation,” Vision Res. 32, 323–333 (1992).
[CrossRef] [PubMed]

Lowe, I.

D. Rose, I. Lowe, “Dynamics of adaptation to contrast,” Perception 11, 505–528 (1982).
[PubMed]

Magnussen, S.

M. W. Greenlee, M. A. Georgeson, S. Magnussen, J. P. Harris, “The time course of adaptation to spatial contrast,” Vision Res. 31, 223–236 (1991).
[CrossRef] [PubMed]

Maunsell, J. H. R.

W. H. Merigan, J. H. R. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef] [PubMed]

G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[CrossRef] [PubMed]

P. H. Schiller, J. H. Sandell, J. H. R. Maunsell, “Functions of the ON and OFF channels of the visual system,” Nature 322, 824–825 (1986).
[PubMed]

Merigan, W. H.

W. H. Merigan, J. H. R. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef] [PubMed]

Miller, K. E.

Miller, N. D.

R. M. Boynton, N. D. Miller, “Visual performance under conditions of transient adaptation,” Illum. Eng. (NY) 58, 541–550 (1963).

Richards, W. A.

Rose, D.

D. Rose, R. Evans, “Evidence against saturation of contrast adaptation in the human visual system,” Percept. Psychophys. 34, 158–160 (1983).
[CrossRef] [PubMed]

D. Rose, I. Lowe, “Dynamics of adaptation to contrast,” Perception 11, 505–528 (1982).
[PubMed]

Rushton, W. A. H.

W. A. H. Rushton, “Visual adaptation,” Proc. R. Soc. London Ser. B 162, 20–46 (1965).
[CrossRef]

Sandell, J. H.

P. H. Schiller, J. H. Sandell, J. H. R. Maunsell, “Functions of the ON and OFF channels of the visual system,” Nature 322, 824–825 (1986).
[PubMed]

Savoie, R. E.

Schiller, P. H.

P. H. Schiller, J. H. Sandell, J. H. R. Maunsell, “Functions of the ON and OFF channels of the visual system,” Nature 322, 824–825 (1986).
[PubMed]

Sclar, G.

G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[CrossRef] [PubMed]

Sperling, G.

Swets, J. A.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

Thorson, J.

J. Thorson, M. Biederman-Thorson, “Distributed relaxation processes in sensory adaptation,” Science 183, 161–172 (1974).
[CrossRef] [PubMed]

Tyler, C. W.

Uusitalo, R. O.

M. Juusola, R. O. Uusitalo, M. Weckström, “Transfer of graded potentials at the photoreceptor–interneuron synapse,” J. Gen. Physiol. 105, 117–148 (1995).
[CrossRef] [PubMed]

van der Schaaf, A.

J. H. van Hateren, A. van der Schaaf, “Temporal properties of natural scenes,” in Human Vision and Electronic Imaging, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE2657, 139–143 (1996).
[CrossRef]

van Hateren, J. H.

J. H. van Hateren, “Spatiotemporal contrast sensitivity of early vision,” Vision Res. 33, 257–267 (1993).
[CrossRef] [PubMed]

J. H. van Hateren, A. van der Schaaf, “Temporal properties of natural scenes,” in Human Vision and Electronic Imaging, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE2657, 139–143 (1996).
[CrossRef]

von Wiegand, T. E.

T. E. von Wiegand, D. C. Hood, N. Graham, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef] [PubMed]

Wagman, I. H.

Wandell, B. A.

E. J. Chichilnisky, B. A. Wandell, “Seeing gray through the ON and OFF pathways,” Visual Neurosci. 13, 591–596 (1996).
[PubMed]

Waugh, S. J.

S. J. Waugh, D. M. Levi, “Visibility, timing and vernier acuity,” Vision Res. 33, 505–526 (1993).
[CrossRef] [PubMed]

Weckström, M.

M. Juusola, R. O. Uusitalo, M. Weckström, “Transfer of graded potentials at the photoreceptor–interneuron synapse,” J. Gen. Physiol. 105, 117–148 (1995).
[CrossRef] [PubMed]

Westheimer, G.

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

Wilson, H. R.

R. W. Bowen, H. R. Wilson, “A two-process analysis of pattern masking,” Vision Res. 34, 645–657 (1994).
[CrossRef] [PubMed]

Yeh, T.

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[CrossRef] [PubMed]

Annu. Rev. Neurosci. (1)

W. H. Merigan, J. H. R. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef] [PubMed]

Appl. Opt. (1)

Illum. Eng. (NY) (1)

R. M. Boynton, N. D. Miller, “Visual performance under conditions of transient adaptation,” Illum. Eng. (NY) 58, 541–550 (1963).

J. Acoust. Soc. Am. (1)

D. M. Green, “Stimulus selection in adaptive psychophysical procedures,” J. Acoust. Soc. Am. 87, 2662–2674 (1990).
[CrossRef] [PubMed]

J. Gen. Physiol. (1)

M. Juusola, R. O. Uusitalo, M. Weckström, “Transfer of graded potentials at the photoreceptor–interneuron synapse,” J. Gen. Physiol. 105, 117–148 (1995).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (7)

J. Opt. Soc. Am. A (1)

Nature (1)

P. H. Schiller, J. H. Sandell, J. H. R. Maunsell, “Functions of the ON and OFF channels of the visual system,” Nature 322, 824–825 (1986).
[PubMed]

Percept. Psychophys. (1)

D. Rose, R. Evans, “Evidence against saturation of contrast adaptation in the human visual system,” Percept. Psychophys. 34, 158–160 (1983).
[CrossRef] [PubMed]

Perception (2)

Y. Chen, H. E. Bedell, L. J. Frishman, “Temporal-contrast discrimination and its neural correlates,” Perception 25, 505–522 (1996).

D. Rose, I. Lowe, “Dynamics of adaptation to contrast,” Perception 11, 505–528 (1982).
[PubMed]

Physiol. Rev. (1)

S. Hecht, “Rods, cones and the chemical basis of vision,” Physiol. Rev. 17, 239–290 (1937).

Proc. R. Soc. London (1)

B. H. Crawford, “Visual adaptation in relation to brief conditioning stimuli,” Proc. R. Soc. London 134, 283–302 (1947).
[PubMed]

Proc. R. Soc. London Ser. B (2)

S. B. Laughlin, J. Howard, B. Blakeslee, “Synaptic limitations to contrast coding in the retina of the blowfly Calliphora,” Proc. R. Soc. London Ser. B 231, 437–467 (1987).
[CrossRef]

W. A. H. Rushton, “Visual adaptation,” Proc. R. Soc. London Ser. B 162, 20–46 (1965).
[CrossRef]

Science (1)

J. Thorson, M. Biederman-Thorson, “Distributed relaxation processes in sensory adaptation,” Science 183, 161–172 (1974).
[CrossRef] [PubMed]

Vision Res. (14)

S. J. Waugh, D. M. Levi, “Visibility, timing and vernier acuity,” Vision Res. 33, 505–526 (1993).
[CrossRef] [PubMed]

W. S. Geisler, “Evidence for the equivalent-background hypothesis in cones,” Vision Res. 19, 799–805 (1979).
[CrossRef] [PubMed]

G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[CrossRef] [PubMed]

M. W. Greenlee, M. A. Georgeson, S. Magnussen, J. P. Harris, “The time course of adaptation to spatial contrast,” Vision Res. 31, 223–236 (1991).
[CrossRef] [PubMed]

J. M. Foley, G. M. Boynton, “Forward pattern masking and adaptation: effects of duration, interstimulus interval, contrast, and spatial and temporal frequency,” Vision Res. 33, 959–980 (1993).
[CrossRef] [PubMed]

R. W. Bowen, H. R. Wilson, “A two-process analysis of pattern masking,” Vision Res. 34, 645–657 (1994).
[CrossRef] [PubMed]

R. W. Bowen, “Isolation and interaction of ON and OFF pathways in human vision: contrast discrimination at pattern offset,” Vision Res. 37, 185–198 (1997).
[CrossRef] [PubMed]

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[CrossRef] [PubMed]

J. H. van Hateren, “Spatiotemporal contrast sensitivity of early vision,” Vision Res. 33, 257–267 (1993).
[CrossRef] [PubMed]

T. E. von Wiegand, D. C. Hood, N. Graham, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef] [PubMed]

M. M. Hayhoe, M. E. Levin, R. J. Koshel, “Subtractive processes in light adaptation,” Vision Res. 32, 323–333 (1992).
[CrossRef] [PubMed]

P. T. Kortum, W. S. Geisler, “Adaptation mechanisms in spatial vision. II. Flash thresholds and background adaptation,” Vision Res. 35, 1595–1605 (1995).
[CrossRef] [PubMed]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

N. Graham, D. C. Hood, “Modeling the dynamics of light adaptation: the merging of two traditions,” Vision Res. 32, 1373–1393 (1992).
[CrossRef] [PubMed]

Visual Neurosci. (1)

E. J. Chichilnisky, B. A. Wandell, “Seeing gray through the ON and OFF pathways,” Visual Neurosci. 13, 591–596 (1996).
[PubMed]

Other (2)

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

J. H. van Hateren, A. van der Schaaf, “Temporal properties of natural scenes,” in Human Vision and Electronic Imaging, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE2657, 139–143 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Temporal conditions for our experiments. The thick traces show the dynamic luminances for the adaptation field in (a) experiment 1, (b) experiment 2, and [(c) and (d)] experiment 3. The test pulse (with a duration of 10 ms and luminance It) is superimposed on the background luminance. The delay τ for the onset of the test pulse is measured relative to the step transition in (a) and relative to the onset of the pulse in the adaptation field in (b). In (c), τ is measured relative to the midpoint of the ramp; in (d), relative to the moment of the main (upward) step.

Fig. 2
Fig. 2

Test detection thresholds as a function of the delay τ of the test flash with respect to luminance steps in the adaptation field. The results are shown for three observers, each at two step conditions: a fourfold increment step from 2800 to 11,200 Td (solid traces), and a fourfold decrement step from 2800 to 700 Td (dashed traces). Detection thresholds for tests superimposed on constant backgrounds are also shown for each of the observers, at luminances corresponding to the (common) prestep value, and for the luminances after the increment and the decrement steps. The error bars, indicated in the increment curve for observer LP, are typical (on a log scale) for the other data points as well.

Fig. 3
Fig. 3

Test detection thresholds as a function of test delay τ  for a twofold increment step from an initial luminance of 700 Td (filled circles) and for a twofold decrement step from an initial luminance of 2800 Td (multiplication signs). The data presented are averaged over two observers (LP and HS). Steady-state thresholds at the two initial luminances and at the (common) final luminance are indicated by the open circles. The error bars refer to random errors in the averaged thresholds and do not reflect the systematic difference in sensitivity between these two observers, which was of similar size as in Fig. 2.

Fig. 4
Fig. 4

Threshold elevation Δ, as defined in Eq. (2), as a function of the contrast C, Eq. (3), of an increment step in the adaptation luminance, at two values τ of the test delay. Regression lines have been fitted with a least-squares method for each value of τ separately. The data presented are for observer HS. The data for other τ (in the range 0–825 ms) and for observer LP yield similar slopes for the regression lines.

Fig. 5
Fig. 5

Threshold elevation Δ, Eq. (2), as a function of the test delay τ, for two values of the contrast C, Eq. (3), of an increment step in the adaptation luminance. Least-squares regression lines are indicated. The data presented are for observer HS. The data for other contrast steps and for observers LP and JH yield similar slopes for the regression lines.

Fig. 6
Fig. 6

Test detection thresholds in experiment 2 as a function of test delay τ for three contrast values, Eq. (3), of the luminance pulse in the adaptation field. Pulses are presented on a luminance I1=2800 Td. Test detection thresholds on a steady background of 2800 Td are indicated at the lower right. The data presented are for observer HS. (a) Increment pulses in the adaptation field [I2>I1, see Fig. 1(b)]. (b) Decrement pulses in the adaptation field (I2<I1).

Fig. 7
Fig. 7

Threshold elevation Δ, Eq. (2), as a function of the contrast C, Eq. (3), of an increment pulse in the adaptation field, for two values of the delay τ of the test pulse. Least-squares regression lines for these two delays are indicated. Note that the delay values presented differ from those plotted in Fig. 4. The data presented are for observer HS. The data for other delay values, for decrement pulses in the adaptation field, and for the other observer (LP) in this experiment all yield similar slopes for the regression lines through the data.

Tables (4)

Tables Icon

Table 1 Parameters in Eq. (4), with Test Delay Measured in Seconds, for the Three Main Observers in Experiment 1 a

Tables Icon

Table 2 Detectability d as a Function of the Duration of a Luminance Pulse in the Adaptation Background for Two Observers a

Tables Icon

Table 3 Test Detection Thresholds in Experiment 3 at Four Conditions for the Dynamics of the Adaptation Luminance: a Ramp Transition, a Step, a Dipole-Enhanced Step, and a Constant Luminance That Is Identical to the Luminance Reached after the Transitions in the Other Three Conditions (5600 Td) a

Tables Icon

Table 4 Comparison of Threshold Elevations Δ [Defined in Eq. (2)] as Measured by von Wiegand et al. 8 (Δm) and As Predicted from Eq. (4), Which Describes Our Step Increment Data (Δp) a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d(It)=2(It/T)β.
Δ(τ)=T(τ)-T(+)T(+).
C=I2-I1I1,
Δ(C, τ)=kCγτ-α.

Metrics