Abstract

We investigated the influence of selective rod light and dark adaptation on cone-mediated sensitivity to monocular displays modulated sinusoidally in both spatial and temporal domains. Rod light adaptation (1) increased sensitivity to high spatial frequencies [8 cycles per degree (cpd)] flickered slowly (2 Hz), an effect that we refer to as grating suppressive rod–cone interaction (gSRCI); (2) increased sensitivity to low spatial frequencies (2 cpd) flickered rapidly (8 Hz), an effect that we refer to as flicker suppressive rod–cone interaction (fSRCI); and (3) had relatively little influence on intermediate temporal–spatial-frequency combinations. The magnitudes of both gSRCI and fSRCI increased as the retinal position of the test display was increasingly displaced parafoveally. In parafoveal retina, both forms of suppressive rod–cone interaction increased as the overall dimension of the test stimulus decreased. However, sensitivity to high spatial frequencies is equally well influenced by adaptation of the viewing and the contralateral eye, while the adapted state of the nonviewing eye negligibly influences sensitivity to rapid flicker. Moreover, gSRCI cannot be observed with a small (30-arcmin) grating restricted to the fovea, while fSRCI is a prominent effect with small foveal test stimuli. Collectively, these results and neurobiological evidence suggest that fSRCI reflects a mechanism restricted to distal retinal, while gSRCI involves extraretinal neural circuitry.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Lythgoe, K. Tansley, “The relation of the critical frequency of flicker to the adaptation of the eye,” Proc. R. Soc. London Ser. B 105, 60–92 (1929).
    [CrossRef]
  2. S. H. Goldberg, T. E. Frumkes, R. W. Nygaard, “Inhibitory influence of unstimulated rods in human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
    [CrossRef] [PubMed]
  3. N. J. Coletta, A. J. Adams, “Rod–cone interactions in flicker detection,” Vision Res. 24, 1333–1340 (1984).
    [CrossRef]
  4. K. R. Alexander, G. A. Fishman, “Rod–cone interaction in flicker perimetry: evidence for a distal retinal locus,” Doc. Ophthalmol. 60, 3–36 (1985).
    [CrossRef] [PubMed]
  5. G. B. Arden, T. E. Frumkes, “Stimulation of rods can increase cone flicker ERGs in man,” Vision Res. 26, 711–721 (1986).
    [CrossRef] [PubMed]
  6. T. E. Frumkes, T. Eysteinsson, “The cellular basis for suppressive rod–cone interaction,” Visual Neurosci. 1, 263–273 (1988).
  7. T. E. Frumkes, S. M. Wu, “Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons,” J. Neurophysiol. 64, 1043–1054 (1990).
    [PubMed]
  8. R. Nelson, R. Pflug, S. M. Baer, “Background-induced flicker enhancement in cat retinal horizontal cells,” J. Comp. Neurol. 64, 326–340 (1990).
  9. R. Nelson, T. E. Frumkes, T. Eysteinsson, R. Pflug, “GABAergic and non-GABAergic forms of suppressive rod–cone interaction,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1291 (1993).
  10. T. E. Frumkes, G. Lange, N. Denny, I. Beczkowska, “Influence of rod adaptation upon cone-responses to light offset in humans. I. Results in normal observers,” Visual Neurosci. 8, 83–89 (1992).
  11. G. Lange, T. E. Frumkes, “Influence of rod adaptation upon cone-responses to light offset in humans. II. Results in an observer with exaggerated SRCl,” Visual Neurosci. 8, 91–95 (1992).
  12. I. Lie, “Dark adaptation and the photochromatic interval,” Doc. Ophthalmol. 17, 411–510 (1963).
    [CrossRef] [PubMed]
  13. K. R. Alexander, G. A. Fishman, D. J. Derlacki, “Mechanisms of rod–cone interaction: evidence from congenital stationary night blindness,” Vision Res. 28, 575–583 (1988).
    [CrossRef]
  14. A. M. Prestude, L. Watkins, J. Watkins, “Interocular light adaptation effect on the ‘Lie’ specific threshold effect,” Vision Res. 18, 855–857 (1978).
    [CrossRef]
  15. L. Spillman, J. E. Conlon, “Photochromatic interval during dark adaptation and as a function of background luminance,” J. Opt. Soc. Am. 62, 182–185 (1972).
    [CrossRef]
  16. T. E. Frumkes, E. Lembessis, J. Vollaro, D. Moshe, T. Eysteinsson, “Influence of rod adaptation upon chromatic and achromatic cone-vision,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 465–469.
  17. F. Naarendorp, N. Denny, T. E. Frumkes, “Rod light and dark adaptation influence cone-mediated spatial acuity,” Vision Res. 28, 67–74 (1988).
    [CrossRef] [PubMed]
  18. F. Naarendorp, T. E. Frumkes, “The influence of short term adaptation of rods and cones on cone-mediated grating visibility,” J. Physiol. (London) 432, 521–541 (1991).
  19. B. A. Ambler, “Hue discrimination in peripheral vision under conditions of dark and light adaptation,” Percept. Psychophys. 15, 586–590 (1974).
    [CrossRef]
  20. N. S. Peachey, W. H. Seiple, E. Auerbach, J. C. Armington, “Rod influence on threshold using different detection criteria during dark adaptation,” Acta Psychol. 64, 261–270 (1987).
    [CrossRef]
  21. T. E. Frumkes, E. Lembessis, J. Vollaro, “Rod modulation of color-opponent channels,” Neurosci. Abstr. 26, 349.2 (1996).
  22. T. E. Frumkes, “Classical and modern psychophysical studies of dark and light adaptation: relationship to underlying retinal function,” in The Science of Vision, K. N. Leibovic, ed. (Springer-Verlag, New York, 1990), pp. 172–210.
  23. N. J. Coletta, A. J. Adams, “Loss of flicker sensitivity on dim backgrounds in normal and dichromatic observers,” Invest. Ophthalmol. Visual Sci. Suppl. 26, 187 (1985).
  24. T. H. Margrain, D. Thomson, “Recovery of spatial vision during dark adaptation in normal and protanopic subjects,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S463 (1995).
  25. F. M. Falcao-Reis, C. R. Hogg, T. E. Frumkes, G. B. Arden, “Nyctalopia with normal rod function: a suppression of cones by rods,” Eye 5, 138–144 (1991).
    [CrossRef] [PubMed]
  26. F. H. Perrin, “Study in binocular flicker,” J. Opt. Soc. Am. 44, 60–69 (1954).
    [CrossRef] [PubMed]
  27. N. Denny, T. E. Frumkes, M. C. Barris, T. Eysteinsson, “Why is sensitivity with two eyes better than with one: binocular summation or interocular suppression?” J. Physiol. (London) 437, 449–460 (1991).
  28. T. Eysteinsson, M. C. Barris, N. Denny, T. E. Frumkes, “Tonic interocular suppression, binocular summation, and the visual evoked potential,” Invest. Ophthalmol. Visual Sci. 34, 2443–2448 (1993).
  29. T. E. Frumkes, G. Lange, F. Naarendorp, T. Eysteinsson, “Suppressive rod–cone interactions: underlying mechanisms and practical application,” in Vol. 57 of Documenta Ophthalmologica Proceedings Series (Kluwer, Dordrecht, The Netherlands, 1995), pp. 329–334.
  30. G. Lange, “The effects of visual adaptation upon spatial and temporal resolution,” Ph.D. dissertation (City University of New York, Flushing, New York, 1994).
  31. N. Denny, “Tonic interocular suppression by a dark adapted eye upon spatial vision in the contralateral eye,” Ph.D. dissertation (City University of New York, Flushing, New York, 1992).
  32. G. Lange, T. E. Frumkes, “Influence of rod-light adaptation upon the visibility of displays modulated concurrently in the temporal and spatial domains,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 1261 (1992).
  33. G. Lange, T. E. Frumkes, “Separate spatial and temporal forms of suppressive rod–cone interaction,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 818 (1993).
  34. G. M. Bauer, T. E. Frumkes, G. R. Holstein, “The influence of rod light and dark adaptation upon rod–cone interaction,” J. Physiol. (London) 337, 101–119 (1983).
  35. C. A. Burbeck, D. H. Kelly, “Spatiotemporal characteristics of visual mechanisms: excitatory–inhibitory model,” J. Opt. Soc. Am. 70, 1121–1126 (1980).
    [CrossRef] [PubMed]
  36. N. Denny, T. E. Frumkes, S. H. Goldberg, “Differences between summatory and suppressive rod–cone interaction,” Clin. Vision Sci. 5, 27–36 (1990).
  37. J. Rovamo, V. Virsu, R. Naesaenen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54–56 (1978).
    [CrossRef] [PubMed]
  38. R. F. Hess, “Post-receptoral sensitivity of the achromat,” in Night Vision, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, New York, 1990), pp. 390–416.
  39. T. E. Frumkes, F. Naarendorp, S. H. Goldberg, “The influence of cone adaptation upon rod mediated flicker,” Vision Res. 26, 1167–1176 (1986).
    [CrossRef] [PubMed]
  40. G. B. Arden, C. R. Hogg, “Rod–cone interactions and analysis of retinal disease,” Br. J. Ophthamol. 69, 405–415 (1985).
    [CrossRef]
  41. N. J. Coletta, A. J. Adams, “Adaptation of a color-opponent mechanism increases parafoveal sensitivity to luminance flicker,” Vision Res. 26, 1241–1248 (1986).
    [CrossRef] [PubMed]
  42. A. Eisner, “Losses of foveal flicker sensitivity during dark adaptation following extended bleaches,” Vision Res. 29, 1401–1423 (1989).
    [CrossRef] [PubMed]
  43. R. W. Nygaard, T. E. Frumkes, “Frequency dependence in scotopic flicker sensitivity,” Vision Res. 25, 115–127 (1985).
    [CrossRef] [PubMed]
  44. T. G. Lansford, H. D. Baker, “Dark adaptation: an interocular light-adaptation effect,” Science 164, 1307–1309 (1969).
    [CrossRef] [PubMed]
  45. W. Makous, D. Teller, R. Boothe, “Binocular interaction in the dark,” Vision Res. 16, 473–476 (1976).
    [CrossRef] [PubMed]
  46. E. Auerbach, A. Dörrenhaus, C. R. Cavonius, “Changes in sensitivity of the dark-adapted eye during concurrent light adaptation of the other eye,” Visual Neurosci. 8, 359–363 (1992).
  47. A. Reeves, N. S. Peachey, E. Auerbach, “Interocular sensitization to a rod-detected test,” Vision Res. 26, 1119–1127 (1987).
    [CrossRef]
  48. H. Uchiyama, “Centrifugal pathways to the retina: influence of the optic tectum,” Visual Neurosci. 3, 183–206 (1989).
    [PubMed]
  49. F. A. Miles, “Centrifugal effects in the avian retina,” Science 170, 882–995 (1970).
    [CrossRef]
  50. S. M. Sherman, “Functional organization of the cat’s lateral geniculate nucleus,” in Cellular Thalamic Mechanisms, M. Bentivoglio, R. Spreafico, eds. (Experta Medica, New York, 1988), pp. 163–183.
  51. R. W. Rodieck, B. Dreher, “Visual suppression from nondominant eye in the lateral geniculate nucleus: a comparison of cat and monkey,” Exp. Brain Res. 35, 465–477 (1979).
    [CrossRef] [PubMed]
  52. K. Purpura, E. Kaplan, R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
    [CrossRef] [PubMed]
  53. W. H. Merigan, J. H. R. Maunsell, “Parallel visual pathways,” Annu. Rev. Neurosci. 16, 369–402 (1993).
    [CrossRef]

1996 (1)

T. E. Frumkes, E. Lembessis, J. Vollaro, “Rod modulation of color-opponent channels,” Neurosci. Abstr. 26, 349.2 (1996).

1995 (1)

T. H. Margrain, D. Thomson, “Recovery of spatial vision during dark adaptation in normal and protanopic subjects,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S463 (1995).

1993 (4)

T. Eysteinsson, M. C. Barris, N. Denny, T. E. Frumkes, “Tonic interocular suppression, binocular summation, and the visual evoked potential,” Invest. Ophthalmol. Visual Sci. 34, 2443–2448 (1993).

G. Lange, T. E. Frumkes, “Separate spatial and temporal forms of suppressive rod–cone interaction,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 818 (1993).

R. Nelson, T. E. Frumkes, T. Eysteinsson, R. Pflug, “GABAergic and non-GABAergic forms of suppressive rod–cone interaction,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1291 (1993).

W. H. Merigan, J. H. R. Maunsell, “Parallel visual pathways,” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef]

1992 (4)

E. Auerbach, A. Dörrenhaus, C. R. Cavonius, “Changes in sensitivity of the dark-adapted eye during concurrent light adaptation of the other eye,” Visual Neurosci. 8, 359–363 (1992).

T. E. Frumkes, G. Lange, N. Denny, I. Beczkowska, “Influence of rod adaptation upon cone-responses to light offset in humans. I. Results in normal observers,” Visual Neurosci. 8, 83–89 (1992).

G. Lange, T. E. Frumkes, “Influence of rod adaptation upon cone-responses to light offset in humans. II. Results in an observer with exaggerated SRCl,” Visual Neurosci. 8, 91–95 (1992).

G. Lange, T. E. Frumkes, “Influence of rod-light adaptation upon the visibility of displays modulated concurrently in the temporal and spatial domains,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 1261 (1992).

1991 (3)

F. M. Falcao-Reis, C. R. Hogg, T. E. Frumkes, G. B. Arden, “Nyctalopia with normal rod function: a suppression of cones by rods,” Eye 5, 138–144 (1991).
[CrossRef] [PubMed]

N. Denny, T. E. Frumkes, M. C. Barris, T. Eysteinsson, “Why is sensitivity with two eyes better than with one: binocular summation or interocular suppression?” J. Physiol. (London) 437, 449–460 (1991).

F. Naarendorp, T. E. Frumkes, “The influence of short term adaptation of rods and cones on cone-mediated grating visibility,” J. Physiol. (London) 432, 521–541 (1991).

1990 (3)

T. E. Frumkes, S. M. Wu, “Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons,” J. Neurophysiol. 64, 1043–1054 (1990).
[PubMed]

R. Nelson, R. Pflug, S. M. Baer, “Background-induced flicker enhancement in cat retinal horizontal cells,” J. Comp. Neurol. 64, 326–340 (1990).

N. Denny, T. E. Frumkes, S. H. Goldberg, “Differences between summatory and suppressive rod–cone interaction,” Clin. Vision Sci. 5, 27–36 (1990).

1989 (2)

A. Eisner, “Losses of foveal flicker sensitivity during dark adaptation following extended bleaches,” Vision Res. 29, 1401–1423 (1989).
[CrossRef] [PubMed]

H. Uchiyama, “Centrifugal pathways to the retina: influence of the optic tectum,” Visual Neurosci. 3, 183–206 (1989).
[PubMed]

1988 (4)

K. Purpura, E. Kaplan, R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef] [PubMed]

F. Naarendorp, N. Denny, T. E. Frumkes, “Rod light and dark adaptation influence cone-mediated spatial acuity,” Vision Res. 28, 67–74 (1988).
[CrossRef] [PubMed]

T. E. Frumkes, T. Eysteinsson, “The cellular basis for suppressive rod–cone interaction,” Visual Neurosci. 1, 263–273 (1988).

K. R. Alexander, G. A. Fishman, D. J. Derlacki, “Mechanisms of rod–cone interaction: evidence from congenital stationary night blindness,” Vision Res. 28, 575–583 (1988).
[CrossRef]

1987 (2)

N. S. Peachey, W. H. Seiple, E. Auerbach, J. C. Armington, “Rod influence on threshold using different detection criteria during dark adaptation,” Acta Psychol. 64, 261–270 (1987).
[CrossRef]

A. Reeves, N. S. Peachey, E. Auerbach, “Interocular sensitization to a rod-detected test,” Vision Res. 26, 1119–1127 (1987).
[CrossRef]

1986 (3)

N. J. Coletta, A. J. Adams, “Adaptation of a color-opponent mechanism increases parafoveal sensitivity to luminance flicker,” Vision Res. 26, 1241–1248 (1986).
[CrossRef] [PubMed]

T. E. Frumkes, F. Naarendorp, S. H. Goldberg, “The influence of cone adaptation upon rod mediated flicker,” Vision Res. 26, 1167–1176 (1986).
[CrossRef] [PubMed]

G. B. Arden, T. E. Frumkes, “Stimulation of rods can increase cone flicker ERGs in man,” Vision Res. 26, 711–721 (1986).
[CrossRef] [PubMed]

1985 (4)

K. R. Alexander, G. A. Fishman, “Rod–cone interaction in flicker perimetry: evidence for a distal retinal locus,” Doc. Ophthalmol. 60, 3–36 (1985).
[CrossRef] [PubMed]

G. B. Arden, C. R. Hogg, “Rod–cone interactions and analysis of retinal disease,” Br. J. Ophthamol. 69, 405–415 (1985).
[CrossRef]

N. J. Coletta, A. J. Adams, “Loss of flicker sensitivity on dim backgrounds in normal and dichromatic observers,” Invest. Ophthalmol. Visual Sci. Suppl. 26, 187 (1985).

R. W. Nygaard, T. E. Frumkes, “Frequency dependence in scotopic flicker sensitivity,” Vision Res. 25, 115–127 (1985).
[CrossRef] [PubMed]

1984 (1)

N. J. Coletta, A. J. Adams, “Rod–cone interactions in flicker detection,” Vision Res. 24, 1333–1340 (1984).
[CrossRef]

1983 (2)

S. H. Goldberg, T. E. Frumkes, R. W. Nygaard, “Inhibitory influence of unstimulated rods in human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef] [PubMed]

G. M. Bauer, T. E. Frumkes, G. R. Holstein, “The influence of rod light and dark adaptation upon rod–cone interaction,” J. Physiol. (London) 337, 101–119 (1983).

1980 (1)

1979 (1)

R. W. Rodieck, B. Dreher, “Visual suppression from nondominant eye in the lateral geniculate nucleus: a comparison of cat and monkey,” Exp. Brain Res. 35, 465–477 (1979).
[CrossRef] [PubMed]

1978 (2)

J. Rovamo, V. Virsu, R. Naesaenen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54–56 (1978).
[CrossRef] [PubMed]

A. M. Prestude, L. Watkins, J. Watkins, “Interocular light adaptation effect on the ‘Lie’ specific threshold effect,” Vision Res. 18, 855–857 (1978).
[CrossRef]

1976 (1)

W. Makous, D. Teller, R. Boothe, “Binocular interaction in the dark,” Vision Res. 16, 473–476 (1976).
[CrossRef] [PubMed]

1974 (1)

B. A. Ambler, “Hue discrimination in peripheral vision under conditions of dark and light adaptation,” Percept. Psychophys. 15, 586–590 (1974).
[CrossRef]

1972 (1)

1970 (1)

F. A. Miles, “Centrifugal effects in the avian retina,” Science 170, 882–995 (1970).
[CrossRef]

1969 (1)

T. G. Lansford, H. D. Baker, “Dark adaptation: an interocular light-adaptation effect,” Science 164, 1307–1309 (1969).
[CrossRef] [PubMed]

1963 (1)

I. Lie, “Dark adaptation and the photochromatic interval,” Doc. Ophthalmol. 17, 411–510 (1963).
[CrossRef] [PubMed]

1954 (1)

1929 (1)

R. J. Lythgoe, K. Tansley, “The relation of the critical frequency of flicker to the adaptation of the eye,” Proc. R. Soc. London Ser. B 105, 60–92 (1929).
[CrossRef]

Adams, A. J.

N. J. Coletta, A. J. Adams, “Adaptation of a color-opponent mechanism increases parafoveal sensitivity to luminance flicker,” Vision Res. 26, 1241–1248 (1986).
[CrossRef] [PubMed]

N. J. Coletta, A. J. Adams, “Loss of flicker sensitivity on dim backgrounds in normal and dichromatic observers,” Invest. Ophthalmol. Visual Sci. Suppl. 26, 187 (1985).

N. J. Coletta, A. J. Adams, “Rod–cone interactions in flicker detection,” Vision Res. 24, 1333–1340 (1984).
[CrossRef]

Alexander, K. R.

K. R. Alexander, G. A. Fishman, D. J. Derlacki, “Mechanisms of rod–cone interaction: evidence from congenital stationary night blindness,” Vision Res. 28, 575–583 (1988).
[CrossRef]

K. R. Alexander, G. A. Fishman, “Rod–cone interaction in flicker perimetry: evidence for a distal retinal locus,” Doc. Ophthalmol. 60, 3–36 (1985).
[CrossRef] [PubMed]

Ambler, B. A.

B. A. Ambler, “Hue discrimination in peripheral vision under conditions of dark and light adaptation,” Percept. Psychophys. 15, 586–590 (1974).
[CrossRef]

Arden, G. B.

F. M. Falcao-Reis, C. R. Hogg, T. E. Frumkes, G. B. Arden, “Nyctalopia with normal rod function: a suppression of cones by rods,” Eye 5, 138–144 (1991).
[CrossRef] [PubMed]

G. B. Arden, T. E. Frumkes, “Stimulation of rods can increase cone flicker ERGs in man,” Vision Res. 26, 711–721 (1986).
[CrossRef] [PubMed]

G. B. Arden, C. R. Hogg, “Rod–cone interactions and analysis of retinal disease,” Br. J. Ophthamol. 69, 405–415 (1985).
[CrossRef]

Armington, J. C.

N. S. Peachey, W. H. Seiple, E. Auerbach, J. C. Armington, “Rod influence on threshold using different detection criteria during dark adaptation,” Acta Psychol. 64, 261–270 (1987).
[CrossRef]

Auerbach, E.

E. Auerbach, A. Dörrenhaus, C. R. Cavonius, “Changes in sensitivity of the dark-adapted eye during concurrent light adaptation of the other eye,” Visual Neurosci. 8, 359–363 (1992).

A. Reeves, N. S. Peachey, E. Auerbach, “Interocular sensitization to a rod-detected test,” Vision Res. 26, 1119–1127 (1987).
[CrossRef]

N. S. Peachey, W. H. Seiple, E. Auerbach, J. C. Armington, “Rod influence on threshold using different detection criteria during dark adaptation,” Acta Psychol. 64, 261–270 (1987).
[CrossRef]

Baer, S. M.

R. Nelson, R. Pflug, S. M. Baer, “Background-induced flicker enhancement in cat retinal horizontal cells,” J. Comp. Neurol. 64, 326–340 (1990).

Baker, H. D.

T. G. Lansford, H. D. Baker, “Dark adaptation: an interocular light-adaptation effect,” Science 164, 1307–1309 (1969).
[CrossRef] [PubMed]

Barris, M. C.

T. Eysteinsson, M. C. Barris, N. Denny, T. E. Frumkes, “Tonic interocular suppression, binocular summation, and the visual evoked potential,” Invest. Ophthalmol. Visual Sci. 34, 2443–2448 (1993).

N. Denny, T. E. Frumkes, M. C. Barris, T. Eysteinsson, “Why is sensitivity with two eyes better than with one: binocular summation or interocular suppression?” J. Physiol. (London) 437, 449–460 (1991).

Bauer, G. M.

G. M. Bauer, T. E. Frumkes, G. R. Holstein, “The influence of rod light and dark adaptation upon rod–cone interaction,” J. Physiol. (London) 337, 101–119 (1983).

Beczkowska, I.

T. E. Frumkes, G. Lange, N. Denny, I. Beczkowska, “Influence of rod adaptation upon cone-responses to light offset in humans. I. Results in normal observers,” Visual Neurosci. 8, 83–89 (1992).

Boothe, R.

W. Makous, D. Teller, R. Boothe, “Binocular interaction in the dark,” Vision Res. 16, 473–476 (1976).
[CrossRef] [PubMed]

Burbeck, C. A.

Cavonius, C. R.

E. Auerbach, A. Dörrenhaus, C. R. Cavonius, “Changes in sensitivity of the dark-adapted eye during concurrent light adaptation of the other eye,” Visual Neurosci. 8, 359–363 (1992).

Coletta, N. J.

N. J. Coletta, A. J. Adams, “Adaptation of a color-opponent mechanism increases parafoveal sensitivity to luminance flicker,” Vision Res. 26, 1241–1248 (1986).
[CrossRef] [PubMed]

N. J. Coletta, A. J. Adams, “Loss of flicker sensitivity on dim backgrounds in normal and dichromatic observers,” Invest. Ophthalmol. Visual Sci. Suppl. 26, 187 (1985).

N. J. Coletta, A. J. Adams, “Rod–cone interactions in flicker detection,” Vision Res. 24, 1333–1340 (1984).
[CrossRef]

Conlon, J. E.

Denny, N.

T. Eysteinsson, M. C. Barris, N. Denny, T. E. Frumkes, “Tonic interocular suppression, binocular summation, and the visual evoked potential,” Invest. Ophthalmol. Visual Sci. 34, 2443–2448 (1993).

T. E. Frumkes, G. Lange, N. Denny, I. Beczkowska, “Influence of rod adaptation upon cone-responses to light offset in humans. I. Results in normal observers,” Visual Neurosci. 8, 83–89 (1992).

N. Denny, T. E. Frumkes, M. C. Barris, T. Eysteinsson, “Why is sensitivity with two eyes better than with one: binocular summation or interocular suppression?” J. Physiol. (London) 437, 449–460 (1991).

N. Denny, T. E. Frumkes, S. H. Goldberg, “Differences between summatory and suppressive rod–cone interaction,” Clin. Vision Sci. 5, 27–36 (1990).

F. Naarendorp, N. Denny, T. E. Frumkes, “Rod light and dark adaptation influence cone-mediated spatial acuity,” Vision Res. 28, 67–74 (1988).
[CrossRef] [PubMed]

N. Denny, “Tonic interocular suppression by a dark adapted eye upon spatial vision in the contralateral eye,” Ph.D. dissertation (City University of New York, Flushing, New York, 1992).

Derlacki, D. J.

K. R. Alexander, G. A. Fishman, D. J. Derlacki, “Mechanisms of rod–cone interaction: evidence from congenital stationary night blindness,” Vision Res. 28, 575–583 (1988).
[CrossRef]

Dörrenhaus, A.

E. Auerbach, A. Dörrenhaus, C. R. Cavonius, “Changes in sensitivity of the dark-adapted eye during concurrent light adaptation of the other eye,” Visual Neurosci. 8, 359–363 (1992).

Dreher, B.

R. W. Rodieck, B. Dreher, “Visual suppression from nondominant eye in the lateral geniculate nucleus: a comparison of cat and monkey,” Exp. Brain Res. 35, 465–477 (1979).
[CrossRef] [PubMed]

Eisner, A.

A. Eisner, “Losses of foveal flicker sensitivity during dark adaptation following extended bleaches,” Vision Res. 29, 1401–1423 (1989).
[CrossRef] [PubMed]

Eysteinsson, T.

R. Nelson, T. E. Frumkes, T. Eysteinsson, R. Pflug, “GABAergic and non-GABAergic forms of suppressive rod–cone interaction,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1291 (1993).

T. Eysteinsson, M. C. Barris, N. Denny, T. E. Frumkes, “Tonic interocular suppression, binocular summation, and the visual evoked potential,” Invest. Ophthalmol. Visual Sci. 34, 2443–2448 (1993).

N. Denny, T. E. Frumkes, M. C. Barris, T. Eysteinsson, “Why is sensitivity with two eyes better than with one: binocular summation or interocular suppression?” J. Physiol. (London) 437, 449–460 (1991).

T. E. Frumkes, T. Eysteinsson, “The cellular basis for suppressive rod–cone interaction,” Visual Neurosci. 1, 263–273 (1988).

T. E. Frumkes, E. Lembessis, J. Vollaro, D. Moshe, T. Eysteinsson, “Influence of rod adaptation upon chromatic and achromatic cone-vision,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 465–469.

T. E. Frumkes, G. Lange, F. Naarendorp, T. Eysteinsson, “Suppressive rod–cone interactions: underlying mechanisms and practical application,” in Vol. 57 of Documenta Ophthalmologica Proceedings Series (Kluwer, Dordrecht, The Netherlands, 1995), pp. 329–334.

Falcao-Reis, F. M.

F. M. Falcao-Reis, C. R. Hogg, T. E. Frumkes, G. B. Arden, “Nyctalopia with normal rod function: a suppression of cones by rods,” Eye 5, 138–144 (1991).
[CrossRef] [PubMed]

Fishman, G. A.

K. R. Alexander, G. A. Fishman, D. J. Derlacki, “Mechanisms of rod–cone interaction: evidence from congenital stationary night blindness,” Vision Res. 28, 575–583 (1988).
[CrossRef]

K. R. Alexander, G. A. Fishman, “Rod–cone interaction in flicker perimetry: evidence for a distal retinal locus,” Doc. Ophthalmol. 60, 3–36 (1985).
[CrossRef] [PubMed]

Frumkes, T. E.

T. E. Frumkes, E. Lembessis, J. Vollaro, “Rod modulation of color-opponent channels,” Neurosci. Abstr. 26, 349.2 (1996).

R. Nelson, T. E. Frumkes, T. Eysteinsson, R. Pflug, “GABAergic and non-GABAergic forms of suppressive rod–cone interaction,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1291 (1993).

T. Eysteinsson, M. C. Barris, N. Denny, T. E. Frumkes, “Tonic interocular suppression, binocular summation, and the visual evoked potential,” Invest. Ophthalmol. Visual Sci. 34, 2443–2448 (1993).

G. Lange, T. E. Frumkes, “Separate spatial and temporal forms of suppressive rod–cone interaction,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 818 (1993).

G. Lange, T. E. Frumkes, “Influence of rod-light adaptation upon the visibility of displays modulated concurrently in the temporal and spatial domains,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 1261 (1992).

T. E. Frumkes, G. Lange, N. Denny, I. Beczkowska, “Influence of rod adaptation upon cone-responses to light offset in humans. I. Results in normal observers,” Visual Neurosci. 8, 83–89 (1992).

G. Lange, T. E. Frumkes, “Influence of rod adaptation upon cone-responses to light offset in humans. II. Results in an observer with exaggerated SRCl,” Visual Neurosci. 8, 91–95 (1992).

F. Naarendorp, T. E. Frumkes, “The influence of short term adaptation of rods and cones on cone-mediated grating visibility,” J. Physiol. (London) 432, 521–541 (1991).

F. M. Falcao-Reis, C. R. Hogg, T. E. Frumkes, G. B. Arden, “Nyctalopia with normal rod function: a suppression of cones by rods,” Eye 5, 138–144 (1991).
[CrossRef] [PubMed]

N. Denny, T. E. Frumkes, M. C. Barris, T. Eysteinsson, “Why is sensitivity with two eyes better than with one: binocular summation or interocular suppression?” J. Physiol. (London) 437, 449–460 (1991).

T. E. Frumkes, S. M. Wu, “Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons,” J. Neurophysiol. 64, 1043–1054 (1990).
[PubMed]

N. Denny, T. E. Frumkes, S. H. Goldberg, “Differences between summatory and suppressive rod–cone interaction,” Clin. Vision Sci. 5, 27–36 (1990).

T. E. Frumkes, T. Eysteinsson, “The cellular basis for suppressive rod–cone interaction,” Visual Neurosci. 1, 263–273 (1988).

F. Naarendorp, N. Denny, T. E. Frumkes, “Rod light and dark adaptation influence cone-mediated spatial acuity,” Vision Res. 28, 67–74 (1988).
[CrossRef] [PubMed]

G. B. Arden, T. E. Frumkes, “Stimulation of rods can increase cone flicker ERGs in man,” Vision Res. 26, 711–721 (1986).
[CrossRef] [PubMed]

T. E. Frumkes, F. Naarendorp, S. H. Goldberg, “The influence of cone adaptation upon rod mediated flicker,” Vision Res. 26, 1167–1176 (1986).
[CrossRef] [PubMed]

R. W. Nygaard, T. E. Frumkes, “Frequency dependence in scotopic flicker sensitivity,” Vision Res. 25, 115–127 (1985).
[CrossRef] [PubMed]

G. M. Bauer, T. E. Frumkes, G. R. Holstein, “The influence of rod light and dark adaptation upon rod–cone interaction,” J. Physiol. (London) 337, 101–119 (1983).

S. H. Goldberg, T. E. Frumkes, R. W. Nygaard, “Inhibitory influence of unstimulated rods in human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef] [PubMed]

T. E. Frumkes, E. Lembessis, J. Vollaro, D. Moshe, T. Eysteinsson, “Influence of rod adaptation upon chromatic and achromatic cone-vision,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 465–469.

T. E. Frumkes, “Classical and modern psychophysical studies of dark and light adaptation: relationship to underlying retinal function,” in The Science of Vision, K. N. Leibovic, ed. (Springer-Verlag, New York, 1990), pp. 172–210.

T. E. Frumkes, G. Lange, F. Naarendorp, T. Eysteinsson, “Suppressive rod–cone interactions: underlying mechanisms and practical application,” in Vol. 57 of Documenta Ophthalmologica Proceedings Series (Kluwer, Dordrecht, The Netherlands, 1995), pp. 329–334.

Goldberg, S. H.

N. Denny, T. E. Frumkes, S. H. Goldberg, “Differences between summatory and suppressive rod–cone interaction,” Clin. Vision Sci. 5, 27–36 (1990).

T. E. Frumkes, F. Naarendorp, S. H. Goldberg, “The influence of cone adaptation upon rod mediated flicker,” Vision Res. 26, 1167–1176 (1986).
[CrossRef] [PubMed]

S. H. Goldberg, T. E. Frumkes, R. W. Nygaard, “Inhibitory influence of unstimulated rods in human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef] [PubMed]

Hess, R. F.

R. F. Hess, “Post-receptoral sensitivity of the achromat,” in Night Vision, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, New York, 1990), pp. 390–416.

Hogg, C. R.

F. M. Falcao-Reis, C. R. Hogg, T. E. Frumkes, G. B. Arden, “Nyctalopia with normal rod function: a suppression of cones by rods,” Eye 5, 138–144 (1991).
[CrossRef] [PubMed]

G. B. Arden, C. R. Hogg, “Rod–cone interactions and analysis of retinal disease,” Br. J. Ophthamol. 69, 405–415 (1985).
[CrossRef]

Holstein, G. R.

G. M. Bauer, T. E. Frumkes, G. R. Holstein, “The influence of rod light and dark adaptation upon rod–cone interaction,” J. Physiol. (London) 337, 101–119 (1983).

Kaplan, E.

K. Purpura, E. Kaplan, R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef] [PubMed]

Kelly, D. H.

Lange, G.

G. Lange, T. E. Frumkes, “Separate spatial and temporal forms of suppressive rod–cone interaction,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 818 (1993).

G. Lange, T. E. Frumkes, “Influence of rod-light adaptation upon the visibility of displays modulated concurrently in the temporal and spatial domains,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 1261 (1992).

T. E. Frumkes, G. Lange, N. Denny, I. Beczkowska, “Influence of rod adaptation upon cone-responses to light offset in humans. I. Results in normal observers,” Visual Neurosci. 8, 83–89 (1992).

G. Lange, T. E. Frumkes, “Influence of rod adaptation upon cone-responses to light offset in humans. II. Results in an observer with exaggerated SRCl,” Visual Neurosci. 8, 91–95 (1992).

G. Lange, “The effects of visual adaptation upon spatial and temporal resolution,” Ph.D. dissertation (City University of New York, Flushing, New York, 1994).

T. E. Frumkes, G. Lange, F. Naarendorp, T. Eysteinsson, “Suppressive rod–cone interactions: underlying mechanisms and practical application,” in Vol. 57 of Documenta Ophthalmologica Proceedings Series (Kluwer, Dordrecht, The Netherlands, 1995), pp. 329–334.

Lansford, T. G.

T. G. Lansford, H. D. Baker, “Dark adaptation: an interocular light-adaptation effect,” Science 164, 1307–1309 (1969).
[CrossRef] [PubMed]

Lembessis, E.

T. E. Frumkes, E. Lembessis, J. Vollaro, “Rod modulation of color-opponent channels,” Neurosci. Abstr. 26, 349.2 (1996).

T. E. Frumkes, E. Lembessis, J. Vollaro, D. Moshe, T. Eysteinsson, “Influence of rod adaptation upon chromatic and achromatic cone-vision,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 465–469.

Lie, I.

I. Lie, “Dark adaptation and the photochromatic interval,” Doc. Ophthalmol. 17, 411–510 (1963).
[CrossRef] [PubMed]

Lythgoe, R. J.

R. J. Lythgoe, K. Tansley, “The relation of the critical frequency of flicker to the adaptation of the eye,” Proc. R. Soc. London Ser. B 105, 60–92 (1929).
[CrossRef]

Makous, W.

W. Makous, D. Teller, R. Boothe, “Binocular interaction in the dark,” Vision Res. 16, 473–476 (1976).
[CrossRef] [PubMed]

Margrain, T. H.

T. H. Margrain, D. Thomson, “Recovery of spatial vision during dark adaptation in normal and protanopic subjects,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S463 (1995).

Maunsell, J. H. R.

W. H. Merigan, J. H. R. Maunsell, “Parallel visual pathways,” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef]

Merigan, W. H.

W. H. Merigan, J. H. R. Maunsell, “Parallel visual pathways,” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef]

Miles, F. A.

F. A. Miles, “Centrifugal effects in the avian retina,” Science 170, 882–995 (1970).
[CrossRef]

Moshe, D.

T. E. Frumkes, E. Lembessis, J. Vollaro, D. Moshe, T. Eysteinsson, “Influence of rod adaptation upon chromatic and achromatic cone-vision,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 465–469.

Naarendorp, F.

F. Naarendorp, T. E. Frumkes, “The influence of short term adaptation of rods and cones on cone-mediated grating visibility,” J. Physiol. (London) 432, 521–541 (1991).

F. Naarendorp, N. Denny, T. E. Frumkes, “Rod light and dark adaptation influence cone-mediated spatial acuity,” Vision Res. 28, 67–74 (1988).
[CrossRef] [PubMed]

T. E. Frumkes, F. Naarendorp, S. H. Goldberg, “The influence of cone adaptation upon rod mediated flicker,” Vision Res. 26, 1167–1176 (1986).
[CrossRef] [PubMed]

T. E. Frumkes, G. Lange, F. Naarendorp, T. Eysteinsson, “Suppressive rod–cone interactions: underlying mechanisms and practical application,” in Vol. 57 of Documenta Ophthalmologica Proceedings Series (Kluwer, Dordrecht, The Netherlands, 1995), pp. 329–334.

Naesaenen, R.

J. Rovamo, V. Virsu, R. Naesaenen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54–56 (1978).
[CrossRef] [PubMed]

Nelson, R.

R. Nelson, T. E. Frumkes, T. Eysteinsson, R. Pflug, “GABAergic and non-GABAergic forms of suppressive rod–cone interaction,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1291 (1993).

R. Nelson, R. Pflug, S. M. Baer, “Background-induced flicker enhancement in cat retinal horizontal cells,” J. Comp. Neurol. 64, 326–340 (1990).

Nygaard, R. W.

R. W. Nygaard, T. E. Frumkes, “Frequency dependence in scotopic flicker sensitivity,” Vision Res. 25, 115–127 (1985).
[CrossRef] [PubMed]

S. H. Goldberg, T. E. Frumkes, R. W. Nygaard, “Inhibitory influence of unstimulated rods in human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef] [PubMed]

Peachey, N. S.

N. S. Peachey, W. H. Seiple, E. Auerbach, J. C. Armington, “Rod influence on threshold using different detection criteria during dark adaptation,” Acta Psychol. 64, 261–270 (1987).
[CrossRef]

A. Reeves, N. S. Peachey, E. Auerbach, “Interocular sensitization to a rod-detected test,” Vision Res. 26, 1119–1127 (1987).
[CrossRef]

Perrin, F. H.

Pflug, R.

R. Nelson, T. E. Frumkes, T. Eysteinsson, R. Pflug, “GABAergic and non-GABAergic forms of suppressive rod–cone interaction,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1291 (1993).

R. Nelson, R. Pflug, S. M. Baer, “Background-induced flicker enhancement in cat retinal horizontal cells,” J. Comp. Neurol. 64, 326–340 (1990).

Prestude, A. M.

A. M. Prestude, L. Watkins, J. Watkins, “Interocular light adaptation effect on the ‘Lie’ specific threshold effect,” Vision Res. 18, 855–857 (1978).
[CrossRef]

Purpura, K.

K. Purpura, E. Kaplan, R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef] [PubMed]

Reeves, A.

A. Reeves, N. S. Peachey, E. Auerbach, “Interocular sensitization to a rod-detected test,” Vision Res. 26, 1119–1127 (1987).
[CrossRef]

Rodieck, R. W.

R. W. Rodieck, B. Dreher, “Visual suppression from nondominant eye in the lateral geniculate nucleus: a comparison of cat and monkey,” Exp. Brain Res. 35, 465–477 (1979).
[CrossRef] [PubMed]

Rovamo, J.

J. Rovamo, V. Virsu, R. Naesaenen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54–56 (1978).
[CrossRef] [PubMed]

Seiple, W. H.

N. S. Peachey, W. H. Seiple, E. Auerbach, J. C. Armington, “Rod influence on threshold using different detection criteria during dark adaptation,” Acta Psychol. 64, 261–270 (1987).
[CrossRef]

Shapley, R. M.

K. Purpura, E. Kaplan, R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef] [PubMed]

Sherman, S. M.

S. M. Sherman, “Functional organization of the cat’s lateral geniculate nucleus,” in Cellular Thalamic Mechanisms, M. Bentivoglio, R. Spreafico, eds. (Experta Medica, New York, 1988), pp. 163–183.

Spillman, L.

Tansley, K.

R. J. Lythgoe, K. Tansley, “The relation of the critical frequency of flicker to the adaptation of the eye,” Proc. R. Soc. London Ser. B 105, 60–92 (1929).
[CrossRef]

Teller, D.

W. Makous, D. Teller, R. Boothe, “Binocular interaction in the dark,” Vision Res. 16, 473–476 (1976).
[CrossRef] [PubMed]

Thomson, D.

T. H. Margrain, D. Thomson, “Recovery of spatial vision during dark adaptation in normal and protanopic subjects,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S463 (1995).

Uchiyama, H.

H. Uchiyama, “Centrifugal pathways to the retina: influence of the optic tectum,” Visual Neurosci. 3, 183–206 (1989).
[PubMed]

Virsu, V.

J. Rovamo, V. Virsu, R. Naesaenen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54–56 (1978).
[CrossRef] [PubMed]

Vollaro, J.

T. E. Frumkes, E. Lembessis, J. Vollaro, “Rod modulation of color-opponent channels,” Neurosci. Abstr. 26, 349.2 (1996).

T. E. Frumkes, E. Lembessis, J. Vollaro, D. Moshe, T. Eysteinsson, “Influence of rod adaptation upon chromatic and achromatic cone-vision,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 465–469.

Watkins, J.

A. M. Prestude, L. Watkins, J. Watkins, “Interocular light adaptation effect on the ‘Lie’ specific threshold effect,” Vision Res. 18, 855–857 (1978).
[CrossRef]

Watkins, L.

A. M. Prestude, L. Watkins, J. Watkins, “Interocular light adaptation effect on the ‘Lie’ specific threshold effect,” Vision Res. 18, 855–857 (1978).
[CrossRef]

Wu, S. M.

T. E. Frumkes, S. M. Wu, “Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons,” J. Neurophysiol. 64, 1043–1054 (1990).
[PubMed]

Acta Psychol. (1)

N. S. Peachey, W. H. Seiple, E. Auerbach, J. C. Armington, “Rod influence on threshold using different detection criteria during dark adaptation,” Acta Psychol. 64, 261–270 (1987).
[CrossRef]

Annu. Rev. Neurosci. (1)

W. H. Merigan, J. H. R. Maunsell, “Parallel visual pathways,” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef]

Br. J. Ophthamol. (1)

G. B. Arden, C. R. Hogg, “Rod–cone interactions and analysis of retinal disease,” Br. J. Ophthamol. 69, 405–415 (1985).
[CrossRef]

Clin. Vision Sci. (1)

N. Denny, T. E. Frumkes, S. H. Goldberg, “Differences between summatory and suppressive rod–cone interaction,” Clin. Vision Sci. 5, 27–36 (1990).

Doc. Ophthalmol. (2)

I. Lie, “Dark adaptation and the photochromatic interval,” Doc. Ophthalmol. 17, 411–510 (1963).
[CrossRef] [PubMed]

K. R. Alexander, G. A. Fishman, “Rod–cone interaction in flicker perimetry: evidence for a distal retinal locus,” Doc. Ophthalmol. 60, 3–36 (1985).
[CrossRef] [PubMed]

Exp. Brain Res. (1)

R. W. Rodieck, B. Dreher, “Visual suppression from nondominant eye in the lateral geniculate nucleus: a comparison of cat and monkey,” Exp. Brain Res. 35, 465–477 (1979).
[CrossRef] [PubMed]

Eye (1)

F. M. Falcao-Reis, C. R. Hogg, T. E. Frumkes, G. B. Arden, “Nyctalopia with normal rod function: a suppression of cones by rods,” Eye 5, 138–144 (1991).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (1)

T. Eysteinsson, M. C. Barris, N. Denny, T. E. Frumkes, “Tonic interocular suppression, binocular summation, and the visual evoked potential,” Invest. Ophthalmol. Visual Sci. 34, 2443–2448 (1993).

Invest. Ophthalmol. Visual Sci. Suppl. (5)

N. J. Coletta, A. J. Adams, “Loss of flicker sensitivity on dim backgrounds in normal and dichromatic observers,” Invest. Ophthalmol. Visual Sci. Suppl. 26, 187 (1985).

T. H. Margrain, D. Thomson, “Recovery of spatial vision during dark adaptation in normal and protanopic subjects,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S463 (1995).

G. Lange, T. E. Frumkes, “Influence of rod-light adaptation upon the visibility of displays modulated concurrently in the temporal and spatial domains,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 1261 (1992).

G. Lange, T. E. Frumkes, “Separate spatial and temporal forms of suppressive rod–cone interaction,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 818 (1993).

R. Nelson, T. E. Frumkes, T. Eysteinsson, R. Pflug, “GABAergic and non-GABAergic forms of suppressive rod–cone interaction,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 1291 (1993).

J. Comp. Neurol. (1)

R. Nelson, R. Pflug, S. M. Baer, “Background-induced flicker enhancement in cat retinal horizontal cells,” J. Comp. Neurol. 64, 326–340 (1990).

J. Neurophysiol. (1)

T. E. Frumkes, S. M. Wu, “Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons,” J. Neurophysiol. 64, 1043–1054 (1990).
[PubMed]

J. Opt. Soc. Am. (3)

J. Physiol. (London) (3)

N. Denny, T. E. Frumkes, M. C. Barris, T. Eysteinsson, “Why is sensitivity with two eyes better than with one: binocular summation or interocular suppression?” J. Physiol. (London) 437, 449–460 (1991).

G. M. Bauer, T. E. Frumkes, G. R. Holstein, “The influence of rod light and dark adaptation upon rod–cone interaction,” J. Physiol. (London) 337, 101–119 (1983).

F. Naarendorp, T. E. Frumkes, “The influence of short term adaptation of rods and cones on cone-mediated grating visibility,” J. Physiol. (London) 432, 521–541 (1991).

Nature (1)

J. Rovamo, V. Virsu, R. Naesaenen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54–56 (1978).
[CrossRef] [PubMed]

Neurosci. Abstr. (1)

T. E. Frumkes, E. Lembessis, J. Vollaro, “Rod modulation of color-opponent channels,” Neurosci. Abstr. 26, 349.2 (1996).

Percept. Psychophys. (1)

B. A. Ambler, “Hue discrimination in peripheral vision under conditions of dark and light adaptation,” Percept. Psychophys. 15, 586–590 (1974).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

K. Purpura, E. Kaplan, R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. B (1)

R. J. Lythgoe, K. Tansley, “The relation of the critical frequency of flicker to the adaptation of the eye,” Proc. R. Soc. London Ser. B 105, 60–92 (1929).
[CrossRef]

Science (3)

S. H. Goldberg, T. E. Frumkes, R. W. Nygaard, “Inhibitory influence of unstimulated rods in human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef] [PubMed]

T. G. Lansford, H. D. Baker, “Dark adaptation: an interocular light-adaptation effect,” Science 164, 1307–1309 (1969).
[CrossRef] [PubMed]

F. A. Miles, “Centrifugal effects in the avian retina,” Science 170, 882–995 (1970).
[CrossRef]

Vision Res. (11)

A. Reeves, N. S. Peachey, E. Auerbach, “Interocular sensitization to a rod-detected test,” Vision Res. 26, 1119–1127 (1987).
[CrossRef]

W. Makous, D. Teller, R. Boothe, “Binocular interaction in the dark,” Vision Res. 16, 473–476 (1976).
[CrossRef] [PubMed]

T. E. Frumkes, F. Naarendorp, S. H. Goldberg, “The influence of cone adaptation upon rod mediated flicker,” Vision Res. 26, 1167–1176 (1986).
[CrossRef] [PubMed]

N. J. Coletta, A. J. Adams, “Rod–cone interactions in flicker detection,” Vision Res. 24, 1333–1340 (1984).
[CrossRef]

G. B. Arden, T. E. Frumkes, “Stimulation of rods can increase cone flicker ERGs in man,” Vision Res. 26, 711–721 (1986).
[CrossRef] [PubMed]

K. R. Alexander, G. A. Fishman, D. J. Derlacki, “Mechanisms of rod–cone interaction: evidence from congenital stationary night blindness,” Vision Res. 28, 575–583 (1988).
[CrossRef]

A. M. Prestude, L. Watkins, J. Watkins, “Interocular light adaptation effect on the ‘Lie’ specific threshold effect,” Vision Res. 18, 855–857 (1978).
[CrossRef]

F. Naarendorp, N. Denny, T. E. Frumkes, “Rod light and dark adaptation influence cone-mediated spatial acuity,” Vision Res. 28, 67–74 (1988).
[CrossRef] [PubMed]

N. J. Coletta, A. J. Adams, “Adaptation of a color-opponent mechanism increases parafoveal sensitivity to luminance flicker,” Vision Res. 26, 1241–1248 (1986).
[CrossRef] [PubMed]

A. Eisner, “Losses of foveal flicker sensitivity during dark adaptation following extended bleaches,” Vision Res. 29, 1401–1423 (1989).
[CrossRef] [PubMed]

R. W. Nygaard, T. E. Frumkes, “Frequency dependence in scotopic flicker sensitivity,” Vision Res. 25, 115–127 (1985).
[CrossRef] [PubMed]

Visual Neurosci. (5)

T. E. Frumkes, T. Eysteinsson, “The cellular basis for suppressive rod–cone interaction,” Visual Neurosci. 1, 263–273 (1988).

T. E. Frumkes, G. Lange, N. Denny, I. Beczkowska, “Influence of rod adaptation upon cone-responses to light offset in humans. I. Results in normal observers,” Visual Neurosci. 8, 83–89 (1992).

G. Lange, T. E. Frumkes, “Influence of rod adaptation upon cone-responses to light offset in humans. II. Results in an observer with exaggerated SRCl,” Visual Neurosci. 8, 91–95 (1992).

E. Auerbach, A. Dörrenhaus, C. R. Cavonius, “Changes in sensitivity of the dark-adapted eye during concurrent light adaptation of the other eye,” Visual Neurosci. 8, 359–363 (1992).

H. Uchiyama, “Centrifugal pathways to the retina: influence of the optic tectum,” Visual Neurosci. 3, 183–206 (1989).
[PubMed]

Other (7)

S. M. Sherman, “Functional organization of the cat’s lateral geniculate nucleus,” in Cellular Thalamic Mechanisms, M. Bentivoglio, R. Spreafico, eds. (Experta Medica, New York, 1988), pp. 163–183.

R. F. Hess, “Post-receptoral sensitivity of the achromat,” in Night Vision, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, New York, 1990), pp. 390–416.

T. E. Frumkes, E. Lembessis, J. Vollaro, D. Moshe, T. Eysteinsson, “Influence of rod adaptation upon chromatic and achromatic cone-vision,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 465–469.

T. E. Frumkes, “Classical and modern psychophysical studies of dark and light adaptation: relationship to underlying retinal function,” in The Science of Vision, K. N. Leibovic, ed. (Springer-Verlag, New York, 1990), pp. 172–210.

T. E. Frumkes, G. Lange, F. Naarendorp, T. Eysteinsson, “Suppressive rod–cone interactions: underlying mechanisms and practical application,” in Vol. 57 of Documenta Ophthalmologica Proceedings Series (Kluwer, Dordrecht, The Netherlands, 1995), pp. 329–334.

G. Lange, “The effects of visual adaptation upon spatial and temporal resolution,” Ph.D. dissertation (City University of New York, Flushing, New York, 1994).

N. Denny, “Tonic interocular suppression by a dark adapted eye upon spatial vision in the contralateral eye,” Ph.D. dissertation (City University of New York, Flushing, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Monocular contrast sensitivity for a 1° square display that had an average luminance of 10 cd/m2 and which was presented 4° parafoveally to observer TEF. The two columns of graphs represent the same set of data plotted twice: Sensitivity (the reciprocal of percent threshold modulation) is plotted as a function of temporal frequency for the indicated spatial frequency (left-hand column) and as a function of spatial frequency for the indicated temporal frequency (right-hand column). The filled circles show contrast sensitivity when no stimulus save the test display was presented; the open triangles show sensitivity in the presence of a large, 0.03-cd/m2 luminance background. Both stimuli were presented monocularly to the left eye. The error bars indicate ±1 standard error: When no error bars are plotted, the size of the indicated datum exceeds ±1 standard error.

Fig. 2
Fig. 2

Derived estimate of the enhancement in sensitivity produced by a large, 0.03-cd/m2 background field under the test stimulus conditions specified in the caption to Fig. 1 and by the procedure specified in the text. The shape of the plotted symbols indicates the observer used: The open symbols are from TEF (results derived from Fig. 1), the squares are from unillustrated results from PC, the upright triangles (▲’s) are the monocular data illustrated for GL in Fig. 6 and the inverted triangles are from unillustrated raw data obtained 6 months earlier for observer GL. The upper left-hand coordinates show contrast sensitivity as a function of flicker frequency for a 1-cpd (filled symbols) display and a 16-cpd display (open symbols); the upper right-hand coordinates show contrast sensitivity as a function of spatial frequency for a display flickered at 1 Hz (filled symbols) or 16 Hz (open symbols). The lower coordinates show contrast sensitivity as a function of flicker frequency for a 4-cpd grating (left) or as a function of spatial frequency for 4-Hz flicker (right).

Fig. 3
Fig. 3

Monocular contrast sensitivity for either a 1 cpd×12 Hz display (left) or a 12 cpd×1 Hz display (right) of 10-cd/m2 average luminance presented 6° parafoveally for observer GL. Results were obtained either in the otherwise dark-adapted eye (filled bars) or in the presence of a large, 0.03-cd/m2 background field (open bars). The test display either was a 1°-sized square or was of full size (i.e., a 2.4°×3.2° rectangle), as indicated.

Fig. 4
Fig. 4

Monocular contrast sensitivity of observer GL for a 1° square display of 10-cd/m2 average luminance as a function of retinal position. The test display was either a 1 cpd×12 Hz display (upper left-hand coordinates) or a 12 cpd×1 Hz display (upper right-hand coordinates). Results were obtained either in the otherwise dark-adapted eye (filled bars) or in the presence of a large, 0.03-cd/m2 background field (open bars). The lower set of coordinates was derived from the upper plots and shows the background-induced enhancement for the 1 cpd×12 Hz display (the filled bars labeled “flicker”) and for the 12 cpd×1 Hz display (the open bars labeled “grating”).

Fig. 5
Fig. 5

Monocular contrast sensitivity in the fovea for observer GL to stimuli with an average luminance of 10 cd/m2. The upper left-hand data were obtained with a 1 cpd×12 Hz test stimulus, while the upper right-hand data were obtained with a 12 cpd×1 Hz test. In these upper plots, filled bars indicate results obtained with no background present, whereas open bars indicate the presence of a large, 0.03-cd/m2 background field. On both the left-hand and the right-hand sets of coordinates, data to the left of the double-dashed lines were obtained with a solid test with the indicated outer dimensions; data to the right of the double-dashed lines were obtained with a frame-shaped test stimulus with the indicated inner dimensions and an outer dimension of 2.4°×3.2°. The lower sets of coordinates were derived from the upper plots and show the background-induced enhancement for the 1 cpd×12 Hz display (filled bars labeled “flicker”) and for the 12 cpd×1 Hz display (open bars labeled “grating”). Data to the left of the double-dashed lines were obtained with the solid test display, whereas data to the right were obtained with the frame-shaped test display.

Fig. 6
Fig. 6

Monocular contrast sensitivity to a 1° square display that had an average luminance of 10 cd/m2 and which was presented 4° parafoveally to observer GL. All the conventions are the same as in the caption to Fig. 1, save that the different-shaped symbols indicate the presence of no background (filled circles), a 0.03-cd/m2 background presented to the test (left) eye (open triangles), or the same background presented to the contralateral (right) eye (open squares).

Fig. 7
Fig. 7

Derived estimates of the enhancement in sensitivity produced by a large, 0.03-cd/m2 background field under the test stimulus conditions specified in the caption to Fig. 6 and by the procedure specified in the text. The shape of the symbols indicates whether GL (triangles, data derived from Fig. 6) or PC (squares, unillustrated raw data) was the observer; open symbols indicate the use of a monocular background, while filled symbols indicate the use of an interocular background. Data shown in the upper plot were obtained with a 1-cpd grating flickered at the frequency indicated on the abscissa, while data shown in the lower plot were obtained with a grating flickered at 1 Hz with the spatial frequency indicated on the abscissa.

Fig. 8
Fig. 8

Contrast sensitivity of observer GL to a 1° square-shaped display with an average luminance of 10 cd/m2 as a function of the luminance of a large, monocular (open symbols) or interocular (filled symbols) background field. Data plotted with circles were obtained in the fovea, while data plotted with triangles were obtained 4° parafoveally. The upper set of coordinates was obtained with a 12-cpd grating flickered at 1 Hz, while the lower set of coordinates was obtained with a 1-cpd grating flickered at 12 Hz. The pairs of dashed horizontal lines indicate 95% confidence intervals for the control threshold values. The background luminance value used to collect the data shown in Figs. 17, 0.03 cd/m2, corresponds closely to an abscissa value in these plots of -1.5 log cd/m2.

Fig. 9
Fig. 9

Changes in sensitivity during dark adaptation for observer ND after exposure to an 800-cd/m2 background field for 1 min. The upper coordinates show threshold illuminance for a 1° test flash of 200-ms duration, which was either 655 nm in wavelength and presented foveally (open circles) or 512 nm in wavelength and presented 7° parafoveally, as a function of time in the dark after bleaching the test (left) eye. TVF, threshold versus flicker. The middle coordinates show contrast sensitivity to an 11-cpd grating that had an overall spatial extent of 2.4°×3.2° and which was presented 5° parafoveally with an average luminance of 10 cd/m2 after light adaptation of either the test eye (the left eye, open triangles) or the contralateral eye (the right eye, open triangles). The smooth function is a fourth-order regression function fitted through the interocular data. The bottom coordinates superimpose the 512-nm detection data (left-hand ordinate and filled circles) and the contrast sensitivity data (right-hand ordinate and open symbols). See text for further explanation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E=[(experimental/control)-1)]×100%,

Metrics