Abstract

High-contrast holograms of unstained DNA molecules, deposited on a dedicated sample holder fabricated by silicon micromachining techniques, have been obtained in the low-energy electron point-source microscope. Recording at television rates allows dynamic processes to be observed. Numerical reconstruction of the holograms reveals the structure of the molecules depicted as the magnitude of the electron object wave front.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-W. Fink, W. Stocker, H. Schmid, “Holography with low energy electrons,” Phys. Rev. Lett. 65, 1204–1206 (1990).
    [CrossRef] [PubMed]
  2. H.-W. Fink, “Point source for ions and electrons,” Physica Scripta 38, 260–263 (1988).
  3. D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–779 (1948);D. Gabor, Proc. R. Soc. London, Ser. A 197, 454–456 (1949).
    [CrossRef]
  4. M. E. Haine, T. Mulvey, “The formation of the diffraction image with electrons in the Gabor diffraction microscope,” J. Opt. Soc. Am. 42, 763–773 (1952).
    [CrossRef]
  5. For a recent summary, see T. Mulvey, “Changes in direction for electron beam holography,” Euro. Microsc. Anal.31–33 (Jan.27, 1994).
  6. H. Lichte, “Electron holography approaching atomic resolution,” Ultramicroscopy 20, 293–304 (1986);H. Lichte, Electron Holography (Elsevier, Amsterdam, 1995).
    [CrossRef]
  7. A. Tonomura, Electron Holography (Elsevier, Amsterdam, 1995).
  8. G. Moellenstedt, H. Dueker, “Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen,” Z. Phys. 145, 377–397 (1956).
    [CrossRef]
  9. T. Matsumoto, T. Tanji, A. Tonomura, Electron Holography (Elsevier, Amsterdam, 1995).
  10. H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, H. Schmid, “Theory of the point source microscopy,” Ultramicroscopy 45, 381–403 (1992).
    [CrossRef]
  11. K. M. Köhler, R. Pechmann, A. Schaper, A. Schober, T. M. Jovin, A. Schwienhorst, in Microsystem Technologies ’94, H. Reichl, A. Heuberger, eds. (vde-Verlag, Berlin, 1994) 863–872.
  12. R. M. Zimmerman, E. C. Cox, “DNA stretching on functionalized gold surfaces,” Nucleic Acids Res. 22/23, 492–497 (1994).
  13. H. Schmid, H.-W. Fink, “Mechanical and electrical manipulation of nanometer sized wires,” Nanotechnology 5, 26–32 (1994).
    [CrossRef]

1994 (3)

For a recent summary, see T. Mulvey, “Changes in direction for electron beam holography,” Euro. Microsc. Anal.31–33 (Jan.27, 1994).

R. M. Zimmerman, E. C. Cox, “DNA stretching on functionalized gold surfaces,” Nucleic Acids Res. 22/23, 492–497 (1994).

H. Schmid, H.-W. Fink, “Mechanical and electrical manipulation of nanometer sized wires,” Nanotechnology 5, 26–32 (1994).
[CrossRef]

1992 (1)

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, H. Schmid, “Theory of the point source microscopy,” Ultramicroscopy 45, 381–403 (1992).
[CrossRef]

1990 (1)

H.-W. Fink, W. Stocker, H. Schmid, “Holography with low energy electrons,” Phys. Rev. Lett. 65, 1204–1206 (1990).
[CrossRef] [PubMed]

1988 (1)

H.-W. Fink, “Point source for ions and electrons,” Physica Scripta 38, 260–263 (1988).

1986 (1)

H. Lichte, “Electron holography approaching atomic resolution,” Ultramicroscopy 20, 293–304 (1986);H. Lichte, Electron Holography (Elsevier, Amsterdam, 1995).
[CrossRef]

1956 (1)

G. Moellenstedt, H. Dueker, “Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen,” Z. Phys. 145, 377–397 (1956).
[CrossRef]

1952 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–779 (1948);D. Gabor, Proc. R. Soc. London, Ser. A 197, 454–456 (1949).
[CrossRef]

Cox, E. C.

R. M. Zimmerman, E. C. Cox, “DNA stretching on functionalized gold surfaces,” Nucleic Acids Res. 22/23, 492–497 (1994).

Dueker, H.

G. Moellenstedt, H. Dueker, “Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen,” Z. Phys. 145, 377–397 (1956).
[CrossRef]

Fink, H.-W.

H. Schmid, H.-W. Fink, “Mechanical and electrical manipulation of nanometer sized wires,” Nanotechnology 5, 26–32 (1994).
[CrossRef]

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, H. Schmid, “Theory of the point source microscopy,” Ultramicroscopy 45, 381–403 (1992).
[CrossRef]

H.-W. Fink, W. Stocker, H. Schmid, “Holography with low energy electrons,” Phys. Rev. Lett. 65, 1204–1206 (1990).
[CrossRef] [PubMed]

H.-W. Fink, “Point source for ions and electrons,” Physica Scripta 38, 260–263 (1988).

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–779 (1948);D. Gabor, Proc. R. Soc. London, Ser. A 197, 454–456 (1949).
[CrossRef]

Haine, M. E.

Jovin, T. M.

K. M. Köhler, R. Pechmann, A. Schaper, A. Schober, T. M. Jovin, A. Schwienhorst, in Microsystem Technologies ’94, H. Reichl, A. Heuberger, eds. (vde-Verlag, Berlin, 1994) 863–872.

Köhler, K. M.

K. M. Köhler, R. Pechmann, A. Schaper, A. Schober, T. M. Jovin, A. Schwienhorst, in Microsystem Technologies ’94, H. Reichl, A. Heuberger, eds. (vde-Verlag, Berlin, 1994) 863–872.

Kreuzer, H. J.

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, H. Schmid, “Theory of the point source microscopy,” Ultramicroscopy 45, 381–403 (1992).
[CrossRef]

Lichte, H.

H. Lichte, “Electron holography approaching atomic resolution,” Ultramicroscopy 20, 293–304 (1986);H. Lichte, Electron Holography (Elsevier, Amsterdam, 1995).
[CrossRef]

Matsumoto, T.

T. Matsumoto, T. Tanji, A. Tonomura, Electron Holography (Elsevier, Amsterdam, 1995).

Moellenstedt, G.

G. Moellenstedt, H. Dueker, “Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen,” Z. Phys. 145, 377–397 (1956).
[CrossRef]

Mulvey, T.

For a recent summary, see T. Mulvey, “Changes in direction for electron beam holography,” Euro. Microsc. Anal.31–33 (Jan.27, 1994).

M. E. Haine, T. Mulvey, “The formation of the diffraction image with electrons in the Gabor diffraction microscope,” J. Opt. Soc. Am. 42, 763–773 (1952).
[CrossRef]

Nakamura, K.

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, H. Schmid, “Theory of the point source microscopy,” Ultramicroscopy 45, 381–403 (1992).
[CrossRef]

Pechmann, R.

K. M. Köhler, R. Pechmann, A. Schaper, A. Schober, T. M. Jovin, A. Schwienhorst, in Microsystem Technologies ’94, H. Reichl, A. Heuberger, eds. (vde-Verlag, Berlin, 1994) 863–872.

Schaper, A.

K. M. Köhler, R. Pechmann, A. Schaper, A. Schober, T. M. Jovin, A. Schwienhorst, in Microsystem Technologies ’94, H. Reichl, A. Heuberger, eds. (vde-Verlag, Berlin, 1994) 863–872.

Schmid, H.

H. Schmid, H.-W. Fink, “Mechanical and electrical manipulation of nanometer sized wires,” Nanotechnology 5, 26–32 (1994).
[CrossRef]

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, H. Schmid, “Theory of the point source microscopy,” Ultramicroscopy 45, 381–403 (1992).
[CrossRef]

H.-W. Fink, W. Stocker, H. Schmid, “Holography with low energy electrons,” Phys. Rev. Lett. 65, 1204–1206 (1990).
[CrossRef] [PubMed]

Schober, A.

K. M. Köhler, R. Pechmann, A. Schaper, A. Schober, T. M. Jovin, A. Schwienhorst, in Microsystem Technologies ’94, H. Reichl, A. Heuberger, eds. (vde-Verlag, Berlin, 1994) 863–872.

Schwienhorst, A.

K. M. Köhler, R. Pechmann, A. Schaper, A. Schober, T. M. Jovin, A. Schwienhorst, in Microsystem Technologies ’94, H. Reichl, A. Heuberger, eds. (vde-Verlag, Berlin, 1994) 863–872.

Stocker, W.

H.-W. Fink, W. Stocker, H. Schmid, “Holography with low energy electrons,” Phys. Rev. Lett. 65, 1204–1206 (1990).
[CrossRef] [PubMed]

Tanji, T.

T. Matsumoto, T. Tanji, A. Tonomura, Electron Holography (Elsevier, Amsterdam, 1995).

Tonomura, A.

T. Matsumoto, T. Tanji, A. Tonomura, Electron Holography (Elsevier, Amsterdam, 1995).

A. Tonomura, Electron Holography (Elsevier, Amsterdam, 1995).

Wierzbicki, A.

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, H. Schmid, “Theory of the point source microscopy,” Ultramicroscopy 45, 381–403 (1992).
[CrossRef]

Zimmerman, R. M.

R. M. Zimmerman, E. C. Cox, “DNA stretching on functionalized gold surfaces,” Nucleic Acids Res. 22/23, 492–497 (1994).

Euro. Microsc. Anal. (1)

For a recent summary, see T. Mulvey, “Changes in direction for electron beam holography,” Euro. Microsc. Anal.31–33 (Jan.27, 1994).

J. Opt. Soc. Am. (1)

Nanotechnology (1)

H. Schmid, H.-W. Fink, “Mechanical and electrical manipulation of nanometer sized wires,” Nanotechnology 5, 26–32 (1994).
[CrossRef]

Nature (London) (1)

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–779 (1948);D. Gabor, Proc. R. Soc. London, Ser. A 197, 454–456 (1949).
[CrossRef]

Nucleic Acids Res. (1)

R. M. Zimmerman, E. C. Cox, “DNA stretching on functionalized gold surfaces,” Nucleic Acids Res. 22/23, 492–497 (1994).

Phys. Rev. Lett. (1)

H.-W. Fink, W. Stocker, H. Schmid, “Holography with low energy electrons,” Phys. Rev. Lett. 65, 1204–1206 (1990).
[CrossRef] [PubMed]

Physica Scripta (1)

H.-W. Fink, “Point source for ions and electrons,” Physica Scripta 38, 260–263 (1988).

Ultramicroscopy (2)

H. Lichte, “Electron holography approaching atomic resolution,” Ultramicroscopy 20, 293–304 (1986);H. Lichte, Electron Holography (Elsevier, Amsterdam, 1995).
[CrossRef]

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, H. Schmid, “Theory of the point source microscopy,” Ultramicroscopy 45, 381–403 (1992).
[CrossRef]

Z. Phys. (1)

G. Moellenstedt, H. Dueker, “Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen,” Z. Phys. 145, 377–397 (1956).
[CrossRef]

Other (3)

T. Matsumoto, T. Tanji, A. Tonomura, Electron Holography (Elsevier, Amsterdam, 1995).

A. Tonomura, Electron Holography (Elsevier, Amsterdam, 1995).

K. M. Köhler, R. Pechmann, A. Schaper, A. Schober, T. M. Jovin, A. Schwienhorst, in Microsystem Technologies ’94, H. Reichl, A. Heuberger, eds. (vde-Verlag, Berlin, 1994) 863–872.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Original drawing from D. Gabor’s article published in 1948, illustrating the setup for holography using an electron microscope. (Reprinted by permission from Nature 161, 777. Copyright © 1948 Macmillan Magazines Ltd.) (b) Schematic of the LEEPS microscope. See text for explanation.

Fig. 2
Fig. 2

Schematic drawing illustrating the microfabricated support for the holographic investigation of DNA molecules as well as a close-up view.  

Fig. 3
Fig. 3

Approach sequence of the electron source toward the sample. Left, 170 eV, bar 10 μm; center, 90 eV, bar 1 μm; right, 60 eV, bar 20 nm.

Fig. 4
Fig. 4

Hologram of a DNA molecule taken at 43-eV electron energy and an intensity scan from which more than ten interference fringes are apparent.

Fig. 5
Fig. 5

DNA holograms and reconstructions. Left, 50 eV, bar 20 nm; center and right, 70 eV, bar 40 nm.

Metrics