Abstract

The imaging of a dielectric microsphere with linearly polarized backscattered light is investigated theoretically. Analytical expressions for the electric field and the imaged light intensity distribution in two dimensions are obtained for an arbitrary backscatter geometry, including both telescopic and microscopic arrangements. These distributions are shown to be in many cases more sensitive to small variations in the refractive index of the imaged particle than those obtained by imaging in the off-axis scattering. In microscopic geometry, the sensitivity may be further enhanced by the secondary imaging of the glare rings formed by the backscattered peripheral rays. The possibility of using the backscatter imaging for the absorption spectroscopy of small impurities is discussed.

© 1997 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
    [CrossRef] [PubMed]
  2. J. A. Lock, “Theory of the observations made in high-order rainbows from a single water droplet,” Appl. Opt. 26, 5291–5298 (1987).
    [CrossRef] [PubMed]
  3. J. A. Lock, J. R. Woodruf, “Non-Debye enhancements in the Mie scattering of light from a single water droplet,” Appl. Opt. 28, 523–529 91989).
    [CrossRef] [PubMed]
  4. H. S. van de Hulst, R. T. Wang, “Glare points,” Appl. Opt. 30, 4755–4763 (1991).
    [CrossRef] [PubMed]
  5. S. A. Schaub, D. R. Alexander, J. R. Barton, “Theoretical model of the laser imaging of small aerosols: applications to aerosol sizing,” Appl. Opt. 30, 4777–4784 (1991).
    [CrossRef] [PubMed]
  6. S. A. Schaub, D. R. Alexander, J. R. Barton, “Glare spot image calculations for a spherical particle illuminated by a tightly focused beam,” J. Opt. Soc. Am. A 9, 316–330 (1992).
    [CrossRef]
  7. S. Arnold, S. Holler, J. H. Li, A. Serpenguzel, W. F. Auffermann, S. C. Hill, “Aerosol particle microphotography and glare-spot absorption spectroscopy,” Opt. Lett. 20, 773–775 (1995).
    [CrossRef] [PubMed]
  8. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, New York, 1992), Chaps. 5, 11.
  9. M. Born, D. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1964), Chap. 8.
  10. H. M. Nussenzveig, “High-frequency scattering by a transparent sphere.1. Direct reflection and transmission,” J. Math. Phys. 10, 82–124 (1969).
    [CrossRef]
  11. H. M. Nussenzveig, “High-frequency scattering by a transparent sphere.2. Theory of rainbow and the glory,” J. Math. Phys. 10, 125–176 (1969).
    [CrossRef]
  12. H. M. Nussenzveig, “Complex angular momentum theory of the rainbow and the glory,” J. Opt. Soc. Am. 69, 1068–1079 (1979).
    [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 4, p. 84.
  14. I. S. Gradshtein, Im. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 1966), Chaps. 4, 6.
  15. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  16. J. A. Lock, E. A. Hovenac, “Diffraction of a Gaussian beam by a spherical obstacle,” Am. J. Phys. 61, 698–707 (1992).
    [CrossRef]

1995 (1)

1992 (2)

1991 (2)

1989 (1)

1987 (1)

1981 (1)

1979 (1)

1969 (2)

H. M. Nussenzveig, “High-frequency scattering by a transparent sphere.1. Direct reflection and transmission,” J. Math. Phys. 10, 82–124 (1969).
[CrossRef]

H. M. Nussenzveig, “High-frequency scattering by a transparent sphere.2. Theory of rainbow and the glory,” J. Math. Phys. 10, 125–176 (1969).
[CrossRef]

Alexander, D. R.

Arnold, S.

Ashkin, A.

Auffermann, W. F.

Barber, P. W.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

Barton, J. R.

Born, M.

M. Born, D. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1964), Chap. 8.

Dziedzic, J. M.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 4, p. 84.

Gradshtein, I. S.

I. S. Gradshtein, Im. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 1966), Chaps. 4, 6.

Hill, S. C.

Holler, S.

Hovenac, E. A.

J. A. Lock, E. A. Hovenac, “Diffraction of a Gaussian beam by a spherical obstacle,” Am. J. Phys. 61, 698–707 (1992).
[CrossRef]

Li, J. H.

Lock, J. A.

Nussenzveig, H. M.

H. M. Nussenzveig, “Complex angular momentum theory of the rainbow and the glory,” J. Opt. Soc. Am. 69, 1068–1079 (1979).
[CrossRef]

H. M. Nussenzveig, “High-frequency scattering by a transparent sphere.1. Direct reflection and transmission,” J. Math. Phys. 10, 82–124 (1969).
[CrossRef]

H. M. Nussenzveig, “High-frequency scattering by a transparent sphere.2. Theory of rainbow and the glory,” J. Math. Phys. 10, 125–176 (1969).
[CrossRef]

H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, New York, 1992), Chaps. 5, 11.

Ryzhik, Im. M.

I. S. Gradshtein, Im. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 1966), Chaps. 4, 6.

Schaub, S. A.

Serpenguzel, A.

van de Hulst, H. S.

Wang, R. T.

Wolf, D.

M. Born, D. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1964), Chap. 8.

Woodruf, J. R.

Am. J. Phys. (1)

J. A. Lock, E. A. Hovenac, “Diffraction of a Gaussian beam by a spherical obstacle,” Am. J. Phys. 61, 698–707 (1992).
[CrossRef]

Appl. Opt. (5)

J. Math. Phys. (2)

H. M. Nussenzveig, “High-frequency scattering by a transparent sphere.1. Direct reflection and transmission,” J. Math. Phys. 10, 82–124 (1969).
[CrossRef]

H. M. Nussenzveig, “High-frequency scattering by a transparent sphere.2. Theory of rainbow and the glory,” J. Math. Phys. 10, 125–176 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Other (5)

H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, New York, 1992), Chaps. 5, 11.

M. Born, D. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1964), Chap. 8.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 4, p. 84.

I. S. Gradshtein, Im. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 1966), Chaps. 4, 6.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics