Abstract

The discrimination power of various human facial features is studied and a new scheme for automatic face recognition (AFR) is proposed. The first part of the paper focuses on the linear discriminant analysis (LDA) of different aspects of human faces in the spatial as well as in the wavelet domain. This analysis allows objective evaluation of the significance of visual information in different parts (features) of the face for identifying the human subject. The LDA of faces also provides us with a small set of features that carry the most relevant information for classification purposes. The features are obtained through eigenvector analysis of scatter matrices with the objective of maximizing between-class variations and minimizing within-class variations. The result is an efficient projection-based feature-extraction and classification scheme for AFR. Each projection creates a decision axis with a certain level of discrimination power or reliability. Soft decisions made based on each of the projections are combined, and probabilistic or evidential approaches to multisource data analysis are used to provide more reliable recognition results. For a medium-sized database of human faces, excellent classification accuracy is achieved with the use of very-low-dimensional feature vectors. Moreover, the method used is general and is applicable to many other image-recognition tasks.

© 1997 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gender recognition from facial images: two or three dimensions?

Wenhao Zhang, Melvyn L. Smith, Lyndon N. Smith, and Abdul Farooq
J. Opt. Soc. Am. A 33(3) 333-344 (2016)

Dictionaries for image and video-based face recognition [Invited]

Vishal M. Patel, Yi-Chen Chen, Rama Chellappa, and P. Jonathon Phillips
J. Opt. Soc. Am. A 31(5) 1090-1103 (2014)

New perspectives in face correlation research: a tutorial

Q. Wang, A. Alfalou, and C. Brosseau
Adv. Opt. Photon. 9(1) 1-78 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (27)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription