Abstract

Polarizing beam splitters that use the anisotropic spectral reflectivity (ASR) characteristic of high-spatial-frequency multilayer binary gratings have been designed, fabricated, and characterized. Using the ASR effect with rigorous coupled-wave analysis, we design an optical element that is transparent for TM polarization and reflective for TE polarization at an arbitrary incidence angle and operational wavelength. The experiments with the fabricated element demonstrate a high efficiency (>97%), with polarization extinction ratios higher than 220:1 at a wavelength of 1.523 μm over a 20° angular bandwidth by means of the ASR characteristics of the device. These ASR devices combine many useful characteristics, such as compactness, low insertion loss, high efficiency, and broad angular and spectral bandwidth operations.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. L. Brubaker, A. L. Lentine, R. L. Morrison, S. J. Hinterlong, M. J. Herron, S. L. Walker, J. M. Sasian, “Experimental investigation of a free-space optical switching network by using symmetric self-electro-optic-effect devices,” Appl. Opt. 31, 5431–5446 (1992).
    [CrossRef] [PubMed]
  2. Q. W. Song, M. C. Lee, P. J. Talbot, “Polarization sensitivity of birefringent photorefractive holograms and its applications to binary switching,” Appl. Opt. 31, 6240–6246 (1992).
    [CrossRef] [PubMed]
  3. Y.-T. Huang, Y.-H. Chen, “Polarization-selective elements with a substrate-mode grating pair structure,” Opt. Lett. 18, 921–923 (1993).
    [CrossRef] [PubMed]
  4. M. Ojima, A. Saito, T. Kaku, M. Ito, Y. Tsunoda, S. Takayama, Y. Sugita, “Compact magnetooptical disk for coded data storage,” Appl. Opt. 25, 483–489 (1986).
    [CrossRef] [PubMed]
  5. R. K. Kostuk, T.-J. Kim, G. Campbell, C. W. Han, “Diffractive-optic polarization-sensing element for magneto-optic storage heads,” Opt. Lett. 19, 1257–1259 (1994).
    [CrossRef] [PubMed]
  6. P. Kunstmann, H.-J. Spitschan, “General complex amplitude addition in a polarization interferometer in the detection of pattern differences,” Opt. Commun. 4, 166–168 (1971).
    [CrossRef]
  7. L. B. Wolff, “Polarization camera for computer vision with a beam splitter,” J. Opt. Soc. Am. A 11, 2935–2945 (1994).
    [CrossRef]
  8. K. Shiraishi, T. Sato, S. Kawakami, “Experimental verification of a form-birefringent polarization splitter,” Appl. Phys. Lett. 58, 211–212 (1991).
    [CrossRef]
  9. J. L. Pezzaniti, R. A. Chipman, “Angular dependence of polarizing beam-splitter cubes,” Appl. Opt. 33, 1916–1929 (1994).
    [CrossRef]
  10. S. Aoyama, T. Yamashita, “Grating beam splitter polarizer using multi-layer resist method,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 241–250 (1994).
    [CrossRef]
  11. M. C. Gupta, S. T. Peng, “Multifunction grating for signal detection of optical disk,” in Optical Data Storage ’91, T. A. Shull, N. Imamura, J. J. Burke, eds., Proc. SPIE1499, 303–306 (1991).
    [CrossRef]
  12. S. Habraken, O. Michaux, Y. Renotte, Y. Lion, “Polarizing holographic beam splitter on a photoresist,” Opt. Lett. 20, 2348–2350 (1995).
    [CrossRef] [PubMed]
  13. R. M. A. Azzam, “Polarizing beam splitters for infrared and millimeter waves using single-layer coated dielectric slab or unbacked films,” Appl. Opt. 25, 4225–4227 (1986).
    [CrossRef] [PubMed]
  14. R. C. Tyan, P. C. Sun, A. Scherer, Y. Fainman, “Polarizing beam splitter based on anisotropic spectral reflectivity characteristics of form-birefringent multilayer gratings,” Opt. Lett. 21, 761–763 (1996).
    [CrossRef] [PubMed]
  15. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  16. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
    [CrossRef]
  17. I. Ricther, P. C. Sun, F. Xu, Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34, 2421–2429 (1995).
    [CrossRef]
  18. D. F. Edwards, H. R. Philipp, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 547 and 749.
  19. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1990), p. 377.
  20. E. D. Palik, in Handbook of Optical Constants of Solids, E. D. Palik, ed., (Academic, Orlando, Fla., 1985), p. 695.
  21. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, A. Scherer, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 20, 2457–2459 (1995).
    [CrossRef] [PubMed]
  22. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 705–708.
  23. Reference 22, pp. 51–70.
  24. C. W. Haggans, L. Li, R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
    [CrossRef]
  25. H. Kikuta, H. Yoshida, K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev. 2, 92–99 (1995).
    [CrossRef]
  26. F. Xu, R.-C. Tyan, Y. Fainman, J. E. Ford, “Single-substrate birefringent computer-generated holograms,” Opt. Lett. 21, 516–518 (1996).
    [CrossRef] [PubMed]

1996 (2)

1995 (4)

1994 (3)

1993 (2)

1992 (2)

1991 (1)

K. Shiraishi, T. Sato, S. Kawakami, “Experimental verification of a form-birefringent polarization splitter,” Appl. Phys. Lett. 58, 211–212 (1991).
[CrossRef]

1986 (2)

1982 (1)

1971 (1)

P. Kunstmann, H.-J. Spitschan, “General complex amplitude addition in a polarization interferometer in the detection of pattern differences,” Opt. Commun. 4, 166–168 (1971).
[CrossRef]

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Aoyama, S.

S. Aoyama, T. Yamashita, “Grating beam splitter polarizer using multi-layer resist method,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 241–250 (1994).
[CrossRef]

Azzam, R. M. A.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 705–708.

Brubaker, J. L.

Campbell, G.

Chen, Y.-H.

Cheng, C.-C.

Chipman, R. A.

Cloonan, T. J.

Edwards, D. F.

D. F. Edwards, H. R. Philipp, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 547 and 749.

Fainman, Y.

Ford, J. E.

Gaylord, T. K.

Gupta, M. C.

M. C. Gupta, S. T. Peng, “Multifunction grating for signal detection of optical disk,” in Optical Data Storage ’91, T. A. Shull, N. Imamura, J. J. Burke, eds., Proc. SPIE1499, 303–306 (1991).
[CrossRef]

Habraken, S.

Haggans, C. W.

Han, C. W.

Hecht, E.

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1990), p. 377.

Herron, M. J.

Hinterlong, S. J.

Huang, Y.-T.

Ito, M.

Iwata, K.

H. Kikuta, H. Yoshida, K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev. 2, 92–99 (1995).
[CrossRef]

Kaku, T.

Kawakami, S.

K. Shiraishi, T. Sato, S. Kawakami, “Experimental verification of a form-birefringent polarization splitter,” Appl. Phys. Lett. 58, 211–212 (1991).
[CrossRef]

Kikuta, H.

H. Kikuta, H. Yoshida, K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev. 2, 92–99 (1995).
[CrossRef]

Kim, T.-J.

Kostuk, R. K.

Kunstmann, P.

P. Kunstmann, H.-J. Spitschan, “General complex amplitude addition in a polarization interferometer in the detection of pattern differences,” Opt. Commun. 4, 166–168 (1971).
[CrossRef]

Lee, M. C.

Lentine, A. L.

Li, L.

Lion, Y.

McCormick, F. B.

Michaux, O.

Moharam, M. G.

Morrison, R. L.

Ojima, M.

Palik, E. D.

E. D. Palik, in Handbook of Optical Constants of Solids, E. D. Palik, ed., (Academic, Orlando, Fla., 1985), p. 695.

Peng, S. T.

M. C. Gupta, S. T. Peng, “Multifunction grating for signal detection of optical disk,” in Optical Data Storage ’91, T. A. Shull, N. Imamura, J. J. Burke, eds., Proc. SPIE1499, 303–306 (1991).
[CrossRef]

Pezzaniti, J. L.

Philipp, H. R.

D. F. Edwards, H. R. Philipp, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 547 and 749.

Renotte, Y.

Ricther, I.

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Saito, A.

Sasian, J. M.

Sato, T.

K. Shiraishi, T. Sato, S. Kawakami, “Experimental verification of a form-birefringent polarization splitter,” Appl. Phys. Lett. 58, 211–212 (1991).
[CrossRef]

Scherer, A.

Shiraishi, K.

K. Shiraishi, T. Sato, S. Kawakami, “Experimental verification of a form-birefringent polarization splitter,” Appl. Phys. Lett. 58, 211–212 (1991).
[CrossRef]

Song, Q. W.

Spitschan, H.-J.

P. Kunstmann, H.-J. Spitschan, “General complex amplitude addition in a polarization interferometer in the detection of pattern differences,” Opt. Commun. 4, 166–168 (1971).
[CrossRef]

Sugita, Y.

Sun, P. C.

Sun, P.-C.

Takayama, S.

Talbot, P. J.

Tooley, F. A. P.

Tsunoda, Y.

Tyan, R. C.

Tyan, R.-C.

Walker, S. L.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 705–708.

Wolff, L. B.

Xu, F.

Yamashita, T.

S. Aoyama, T. Yamashita, “Grating beam splitter polarizer using multi-layer resist method,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 241–250 (1994).
[CrossRef]

Yoshida, H.

H. Kikuta, H. Yoshida, K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev. 2, 92–99 (1995).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

K. Shiraishi, T. Sato, S. Kawakami, “Experimental verification of a form-birefringent polarization splitter,” Appl. Phys. Lett. 58, 211–212 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

P. Kunstmann, H.-J. Spitschan, “General complex amplitude addition in a polarization interferometer in the detection of pattern differences,” Opt. Commun. 4, 166–168 (1971).
[CrossRef]

Opt. Lett. (6)

Opt. Rev. (1)

H. Kikuta, H. Yoshida, K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev. 2, 92–99 (1995).
[CrossRef]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other (7)

D. F. Edwards, H. R. Philipp, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 547 and 749.

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1990), p. 377.

E. D. Palik, in Handbook of Optical Constants of Solids, E. D. Palik, ed., (Academic, Orlando, Fla., 1985), p. 695.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 705–708.

Reference 22, pp. 51–70.

S. Aoyama, T. Yamashita, “Grating beam splitter polarizer using multi-layer resist method,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, W. R. McKinney, eds., Proc. SPIE1545, 241–250 (1994).
[CrossRef]

M. C. Gupta, S. T. Peng, “Multifunction grating for signal detection of optical disk,” in Optical Data Storage ’91, T. A. Shull, N. Imamura, J. J. Burke, eds., Proc. SPIE1499, 303–306 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic diagram of a 15-layer quarter-wave structure constructed of two isotropic materials (Si and SiO2); a plot of its spectral reflectivity is also shown. The thickness of Si and SiO2 layers are set as the quarter-wave optical thickness of the wavelength of 1.523 μm. (b) Same as (a), with Si being replaced by anisotropic material, LiNbO3. The thickness of the LiNbO3 layer is set as the quarter-wave optical thickness corresponding to the refractive index for the ordinary wave.

Fig. 2
Fig. 2

(a) Schematic diagram of a seven-layer ASR PBS designed for light at normal incidence. The center operating wavelength is 1.523 μm. The design parameters are indicated in the figure. (b) EMT and (c) RCWA results of the reflectivity for TE- and TM-polarized waves versus wavelength.

Fig. 3
Fig. 3

(a) Schematic diagram of a five-layer ASR PBS operating with waves incident at an angle of 42°. The center operating wavelength is 1.523 μm. The design parameters are indicated in the figure. (b) RCWA results for the reflectivity of TE- and TM-polarized waves versus wavelength. The angles of θ and ϕ are zeros in this calculation. Contour plots of (c) TE reflectance and TM transmittance and (d) the reflection and transmission polarization extinction ratio versus angles (ϕ, θ) are as defined in Fig. 3(a). The angles of incident waves are varied to span an angular bandwidth of ±10° in both θ and ϕ directions near the initial bias angle of 42°.

Fig. 4
Fig. 4

Effects of (a) underetching and (b) overetching fabrication error on reflectivity and extinction ratios for TE- and TM-polarized light.

Fig. 5
Fig. 5

(a) Diagram defining duty cycle error. Effect of duty cycle error on (b) reflectivity and (c) extinction ratios of TE- and TM-polarized light.

Fig. 6
Fig. 6

(a) Diagram defining grating shape error causing trapezoidal profile. Effect of grating profile error on (b) reflectivity and (c) extinction ratios for TE- and TM-polarized light.

Fig. 7
Fig. 7

Schematic diagram describing the fabrication procedures of ASR PBS on SiO2 substrates. PMMA, poly(methyl methacrylate).

Fig. 8
Fig. 8

SEM photograph of the fabricated ASR PBS. The PBS is fabricated on a SiO2 substrate consisting of a multilayer structure of Si and SiO2 with a thickness of 0.13 and 0.26 μm, respectively. The grating has a period of 0.6 μm, with a duty cycle of 0.5.  

Fig. 9
Fig. 9

Schematic diagram of the experimental setup for the characterization of the fabricated ASR PBS. M, mirror; PR, polarization rotator; BS, beam splitter; MO, microscope objective; RS, rotation stage; PD1 and PD2, Ge photodetectors. The transmittance and the reflectance are measured simultaneously to ensure accurate comparison of the extinction ratios and efficiencies.

Fig. 10
Fig. 10

Comparison of experimental measurements and numerical predictions of the fabricated ASR PBS. (a) The device structure shown in Fig. 3(a) has been modified to account for the fabricated grating profile error as well as the underetching fabrication error. (b) Measured and calculated efficiencies for TE- and TM-polarized waves, (c) measured and calculated polarization extinction ratios in transmission and reflection versus incidence angle.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

nTE(2) =nTE(0) 2+13 Λλ2π2F2(1-F)2(nIII2-nI2)21/2,
nTM(2) =nTM(0) 2+13 Λλ2π2F2(1-F)21nIII2-1nI22×nTE(0) 2nTM(0) 61/2,

Metrics