Abstract

A model for analyzing issues involving monospectral target recognition is presented. These issues include modeling target detection, recognition and identification thresholds, and predicting the functional parametric dependencies of the results of observation experiments with human observers. The model makes extensive use of concepts used in information theory. An image of a scene is treated as a sample of an entire set of images of that scene. A difference measure, called the informational difference (InDif) between two image sets is defined. The main assertion is that accomplishing target recognition tasks is equivalent to setting thresholds for the InDif. The applicability of the InDif to the performance of the human visual system (HVS) is shown both analytically, in very simple situations, and in computer calculations involving noisy images. Finally, a single framework for dealing with the HVS and artificial intelligence systems in target recognition applications is shown to result naturally from the InDif formalism.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Johnson, “Analysis of image forming systems,” in Proceedings of the Image Intensifier Symposium, 1958, pp. 249–273.
  2. “Night vision laboratory static performance model for thermal viewing systems,” (U.S. Army Electronics Command, Fort Monmouth, N.J., 1975).
  3. F. A. Rosell, R. H. Wilson, “Recent psychophysical experiments and the display signal-to-noise ratio concept,” in Perception of Displayed Information, L. M. Biberman, ed. (Plenum, New York, 1973), pp. 167–232.
  4. G. R. Gerhart, “Target acquisition criteria for human observers,” in Proceedings of the Human Factors Society 1991 (Human Factors Society, Santa Monica, Calif., 1991), Vol. 2, pp. 1517–1521.
  5. A. van Meeteren, “Characterization of task performance with viewing instruments,” J. Opt. Soc. Am. A 7, 2016–2023 (1990).
    [Crossref] [PubMed]
  6. A. Rose, “The sensitivity of the human eye on an absolute scale,” J. Opt. Soc. Am. 38, 196–208 (1948).
    [Crossref] [PubMed]
  7. H. R. Blackwell, “Contrast thresholds of the human eye,” J. Opt. Soc. Am. 36, 624–643 (1946).
    [Crossref] [PubMed]
  8. H. R. Blackwell, O. M. Blackwell, “Population data for 140 normal 20–30 year olds for use in assessing some effects of lighting upon visual performance,” J. Illum. Eng. Soc. 9, 158–174 (1980).
  9. “An analytic model for describing the influence of lighting parameters upon visual performance,” CIE Publication 19/2.2 (TC-3.1) (CIE, Paris, 1981).
  10. R. M. Boynton, D. E. Ross, “The effect of background luminance and contrast upon visual search performance,” Illum. Eng. 66, 173–186 (1971).
  11. H. R. Blackwell, O. M. Blackwell, “Relationships between visual performance and visibility level for Landolt-ring arrays,” Light. Des. Appl. 7, 36–49 (1977).
  12. H. R. Blackwell, D. E. Scott, “Analysis of visual performance data obtained in a Landolt ring task without response limitation,” J. Illum. Eng. Soc. 2, 445–460 (1973).
    [Crossref]
  13. H. R. Blackwell, “Neural theories of simple visual discriminations,” J. Opt. Soc. Am. 53, 129–160 (1963).
    [Crossref] [PubMed]
  14. I. Overington, Vision and Acquisition (Pentech, London, 1976).
  15. “Colorimetry,” CIE Publication 15.2, 2nd ed. (CIE, Paris, 1986).
  16. “CIE Standard CIE s002—Colorimetric Observers,” CIE Publication s002, 1st ed. (CIE, Paris, 1986).
  17. M. J. Nissen, J. Pokorny, V. C. Smith, “Chromatic information processing,” J. Exp. Psychol. 5, 406–419 (1979).
  18. J. A. Saghri, P. S. Cheatham, A. Habibi, “An HVS-based image quality measure,” in Applications of Digital Image Processing XI, A. G Tescher ed., Proc. SPIE974, 404–412 (1988).
    [Crossref]
  19. N. S. Nagaraja, “Effect of luminance noise on contrast thresholds,” J. Opt. Soc. Am. 54, 950–955 (1970).
    [Crossref]
  20. A. van Meeteren, S. Mangoubi, “Recognition of thermal image: effects of scan-line density and signal-to-noise ratio,” in Assessment of Imaging Systems II, T. L. Williams, ed., Proc. SPIE274, 230–238 (1981).
    [Crossref]
  21. F. Scott, P. A. Hollanda, “The informative value of sampled images as a function of the number of scans per scene object,” Phot. Sci. Eng. 54, 950–955 (1964).
  22. G. Asrar, ed., Theory and Applications of Optical Remote Sensing (Wiley, New York, 1989).
  23. L. E. Hoff, J. R. Evans, L. E. Bunny, “Detection of targets in terrain clutter by using multispectral infrared image processing,” in Signal and Data Processing of Small Targets 1991, O. E. Drummond, ed., Proc. SPIE1481, 98–109 (1991).
    [Crossref]
  24. D. E. Sabol, J. B. Adams, M. O. Smith, “Quantitative subpixel spectral detection of targets in multispectral images,” J. Geophys. Res. 97, 2659–2672 (1992).
    [Crossref]
  25. P. S. Chavez, J. A. Bowell, “Comparison of the spectral information content of Landsat Thematic Mapper and SPOT for three different sites in the Phoenix, Arizona, region,” Photogram. Eng. Remote Sensing 54, 1699–1708 (1988).
  26. S. Gupta, S. P. S. Virdi, “Information content in astronomical images,” Astrophys. Space Sci. 162, 159–161 (1989).
    [Crossref]
  27. S. T. Tou, R. C. Gonzalez, Pattern Recognition Principles (Addison-Wesley, Reading, Mass., 1974).
  28. M. F. Daemi, “Information theory and pattern recognition,” Ph.D. dissertation (University of Nottingham, Nottingham, UK, 1990).
  29. J. Lawson, G. Uhlenbeck, Threshold Signals (McGraw-Hill, New York, 1950), pp. 161–163. (Reprinted by Dover, New York, 1965.)

1992 (1)

D. E. Sabol, J. B. Adams, M. O. Smith, “Quantitative subpixel spectral detection of targets in multispectral images,” J. Geophys. Res. 97, 2659–2672 (1992).
[Crossref]

1990 (1)

1989 (1)

S. Gupta, S. P. S. Virdi, “Information content in astronomical images,” Astrophys. Space Sci. 162, 159–161 (1989).
[Crossref]

1988 (1)

P. S. Chavez, J. A. Bowell, “Comparison of the spectral information content of Landsat Thematic Mapper and SPOT for three different sites in the Phoenix, Arizona, region,” Photogram. Eng. Remote Sensing 54, 1699–1708 (1988).

1980 (1)

H. R. Blackwell, O. M. Blackwell, “Population data for 140 normal 20–30 year olds for use in assessing some effects of lighting upon visual performance,” J. Illum. Eng. Soc. 9, 158–174 (1980).

1979 (1)

M. J. Nissen, J. Pokorny, V. C. Smith, “Chromatic information processing,” J. Exp. Psychol. 5, 406–419 (1979).

1977 (1)

H. R. Blackwell, O. M. Blackwell, “Relationships between visual performance and visibility level for Landolt-ring arrays,” Light. Des. Appl. 7, 36–49 (1977).

1973 (1)

H. R. Blackwell, D. E. Scott, “Analysis of visual performance data obtained in a Landolt ring task without response limitation,” J. Illum. Eng. Soc. 2, 445–460 (1973).
[Crossref]

1971 (1)

R. M. Boynton, D. E. Ross, “The effect of background luminance and contrast upon visual search performance,” Illum. Eng. 66, 173–186 (1971).

1970 (1)

1964 (1)

F. Scott, P. A. Hollanda, “The informative value of sampled images as a function of the number of scans per scene object,” Phot. Sci. Eng. 54, 950–955 (1964).

1963 (1)

1948 (1)

1946 (1)

Adams, J. B.

D. E. Sabol, J. B. Adams, M. O. Smith, “Quantitative subpixel spectral detection of targets in multispectral images,” J. Geophys. Res. 97, 2659–2672 (1992).
[Crossref]

Blackwell, H. R.

H. R. Blackwell, O. M. Blackwell, “Population data for 140 normal 20–30 year olds for use in assessing some effects of lighting upon visual performance,” J. Illum. Eng. Soc. 9, 158–174 (1980).

H. R. Blackwell, O. M. Blackwell, “Relationships between visual performance and visibility level for Landolt-ring arrays,” Light. Des. Appl. 7, 36–49 (1977).

H. R. Blackwell, D. E. Scott, “Analysis of visual performance data obtained in a Landolt ring task without response limitation,” J. Illum. Eng. Soc. 2, 445–460 (1973).
[Crossref]

H. R. Blackwell, “Neural theories of simple visual discriminations,” J. Opt. Soc. Am. 53, 129–160 (1963).
[Crossref] [PubMed]

H. R. Blackwell, “Contrast thresholds of the human eye,” J. Opt. Soc. Am. 36, 624–643 (1946).
[Crossref] [PubMed]

Blackwell, O. M.

H. R. Blackwell, O. M. Blackwell, “Population data for 140 normal 20–30 year olds for use in assessing some effects of lighting upon visual performance,” J. Illum. Eng. Soc. 9, 158–174 (1980).

H. R. Blackwell, O. M. Blackwell, “Relationships between visual performance and visibility level for Landolt-ring arrays,” Light. Des. Appl. 7, 36–49 (1977).

Bowell, J. A.

P. S. Chavez, J. A. Bowell, “Comparison of the spectral information content of Landsat Thematic Mapper and SPOT for three different sites in the Phoenix, Arizona, region,” Photogram. Eng. Remote Sensing 54, 1699–1708 (1988).

Boynton, R. M.

R. M. Boynton, D. E. Ross, “The effect of background luminance and contrast upon visual search performance,” Illum. Eng. 66, 173–186 (1971).

Bunny, L. E.

L. E. Hoff, J. R. Evans, L. E. Bunny, “Detection of targets in terrain clutter by using multispectral infrared image processing,” in Signal and Data Processing of Small Targets 1991, O. E. Drummond, ed., Proc. SPIE1481, 98–109 (1991).
[Crossref]

Chavez, P. S.

P. S. Chavez, J. A. Bowell, “Comparison of the spectral information content of Landsat Thematic Mapper and SPOT for three different sites in the Phoenix, Arizona, region,” Photogram. Eng. Remote Sensing 54, 1699–1708 (1988).

Cheatham, P. S.

J. A. Saghri, P. S. Cheatham, A. Habibi, “An HVS-based image quality measure,” in Applications of Digital Image Processing XI, A. G Tescher ed., Proc. SPIE974, 404–412 (1988).
[Crossref]

Daemi, M. F.

M. F. Daemi, “Information theory and pattern recognition,” Ph.D. dissertation (University of Nottingham, Nottingham, UK, 1990).

Evans, J. R.

L. E. Hoff, J. R. Evans, L. E. Bunny, “Detection of targets in terrain clutter by using multispectral infrared image processing,” in Signal and Data Processing of Small Targets 1991, O. E. Drummond, ed., Proc. SPIE1481, 98–109 (1991).
[Crossref]

Gerhart, G. R.

G. R. Gerhart, “Target acquisition criteria for human observers,” in Proceedings of the Human Factors Society 1991 (Human Factors Society, Santa Monica, Calif., 1991), Vol. 2, pp. 1517–1521.

Gonzalez, R. C.

S. T. Tou, R. C. Gonzalez, Pattern Recognition Principles (Addison-Wesley, Reading, Mass., 1974).

Gupta, S.

S. Gupta, S. P. S. Virdi, “Information content in astronomical images,” Astrophys. Space Sci. 162, 159–161 (1989).
[Crossref]

Habibi, A.

J. A. Saghri, P. S. Cheatham, A. Habibi, “An HVS-based image quality measure,” in Applications of Digital Image Processing XI, A. G Tescher ed., Proc. SPIE974, 404–412 (1988).
[Crossref]

Hoff, L. E.

L. E. Hoff, J. R. Evans, L. E. Bunny, “Detection of targets in terrain clutter by using multispectral infrared image processing,” in Signal and Data Processing of Small Targets 1991, O. E. Drummond, ed., Proc. SPIE1481, 98–109 (1991).
[Crossref]

Hollanda, P. A.

F. Scott, P. A. Hollanda, “The informative value of sampled images as a function of the number of scans per scene object,” Phot. Sci. Eng. 54, 950–955 (1964).

Johnson, J.

J. Johnson, “Analysis of image forming systems,” in Proceedings of the Image Intensifier Symposium, 1958, pp. 249–273.

Lawson, J.

J. Lawson, G. Uhlenbeck, Threshold Signals (McGraw-Hill, New York, 1950), pp. 161–163. (Reprinted by Dover, New York, 1965.)

Mangoubi, S.

A. van Meeteren, S. Mangoubi, “Recognition of thermal image: effects of scan-line density and signal-to-noise ratio,” in Assessment of Imaging Systems II, T. L. Williams, ed., Proc. SPIE274, 230–238 (1981).
[Crossref]

Nagaraja, N. S.

Nissen, M. J.

M. J. Nissen, J. Pokorny, V. C. Smith, “Chromatic information processing,” J. Exp. Psychol. 5, 406–419 (1979).

Overington, I.

I. Overington, Vision and Acquisition (Pentech, London, 1976).

Pokorny, J.

M. J. Nissen, J. Pokorny, V. C. Smith, “Chromatic information processing,” J. Exp. Psychol. 5, 406–419 (1979).

Rose, A.

Rosell, F. A.

F. A. Rosell, R. H. Wilson, “Recent psychophysical experiments and the display signal-to-noise ratio concept,” in Perception of Displayed Information, L. M. Biberman, ed. (Plenum, New York, 1973), pp. 167–232.

Ross, D. E.

R. M. Boynton, D. E. Ross, “The effect of background luminance and contrast upon visual search performance,” Illum. Eng. 66, 173–186 (1971).

Sabol, D. E.

D. E. Sabol, J. B. Adams, M. O. Smith, “Quantitative subpixel spectral detection of targets in multispectral images,” J. Geophys. Res. 97, 2659–2672 (1992).
[Crossref]

Saghri, J. A.

J. A. Saghri, P. S. Cheatham, A. Habibi, “An HVS-based image quality measure,” in Applications of Digital Image Processing XI, A. G Tescher ed., Proc. SPIE974, 404–412 (1988).
[Crossref]

Scott, D. E.

H. R. Blackwell, D. E. Scott, “Analysis of visual performance data obtained in a Landolt ring task without response limitation,” J. Illum. Eng. Soc. 2, 445–460 (1973).
[Crossref]

Scott, F.

F. Scott, P. A. Hollanda, “The informative value of sampled images as a function of the number of scans per scene object,” Phot. Sci. Eng. 54, 950–955 (1964).

Smith, M. O.

D. E. Sabol, J. B. Adams, M. O. Smith, “Quantitative subpixel spectral detection of targets in multispectral images,” J. Geophys. Res. 97, 2659–2672 (1992).
[Crossref]

Smith, V. C.

M. J. Nissen, J. Pokorny, V. C. Smith, “Chromatic information processing,” J. Exp. Psychol. 5, 406–419 (1979).

Tou, S. T.

S. T. Tou, R. C. Gonzalez, Pattern Recognition Principles (Addison-Wesley, Reading, Mass., 1974).

Uhlenbeck, G.

J. Lawson, G. Uhlenbeck, Threshold Signals (McGraw-Hill, New York, 1950), pp. 161–163. (Reprinted by Dover, New York, 1965.)

van Meeteren, A.

A. van Meeteren, “Characterization of task performance with viewing instruments,” J. Opt. Soc. Am. A 7, 2016–2023 (1990).
[Crossref] [PubMed]

A. van Meeteren, S. Mangoubi, “Recognition of thermal image: effects of scan-line density and signal-to-noise ratio,” in Assessment of Imaging Systems II, T. L. Williams, ed., Proc. SPIE274, 230–238 (1981).
[Crossref]

Virdi, S. P. S.

S. Gupta, S. P. S. Virdi, “Information content in astronomical images,” Astrophys. Space Sci. 162, 159–161 (1989).
[Crossref]

Wilson, R. H.

F. A. Rosell, R. H. Wilson, “Recent psychophysical experiments and the display signal-to-noise ratio concept,” in Perception of Displayed Information, L. M. Biberman, ed. (Plenum, New York, 1973), pp. 167–232.

Astrophys. Space Sci. (1)

S. Gupta, S. P. S. Virdi, “Information content in astronomical images,” Astrophys. Space Sci. 162, 159–161 (1989).
[Crossref]

Illum. Eng. (1)

R. M. Boynton, D. E. Ross, “The effect of background luminance and contrast upon visual search performance,” Illum. Eng. 66, 173–186 (1971).

J. Exp. Psychol. (1)

M. J. Nissen, J. Pokorny, V. C. Smith, “Chromatic information processing,” J. Exp. Psychol. 5, 406–419 (1979).

J. Geophys. Res. (1)

D. E. Sabol, J. B. Adams, M. O. Smith, “Quantitative subpixel spectral detection of targets in multispectral images,” J. Geophys. Res. 97, 2659–2672 (1992).
[Crossref]

J. Illum. Eng. Soc. (2)

H. R. Blackwell, D. E. Scott, “Analysis of visual performance data obtained in a Landolt ring task without response limitation,” J. Illum. Eng. Soc. 2, 445–460 (1973).
[Crossref]

H. R. Blackwell, O. M. Blackwell, “Population data for 140 normal 20–30 year olds for use in assessing some effects of lighting upon visual performance,” J. Illum. Eng. Soc. 9, 158–174 (1980).

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (1)

Light. Des. Appl. (1)

H. R. Blackwell, O. M. Blackwell, “Relationships between visual performance and visibility level for Landolt-ring arrays,” Light. Des. Appl. 7, 36–49 (1977).

Phot. Sci. Eng. (1)

F. Scott, P. A. Hollanda, “The informative value of sampled images as a function of the number of scans per scene object,” Phot. Sci. Eng. 54, 950–955 (1964).

Photogram. Eng. Remote Sensing (1)

P. S. Chavez, J. A. Bowell, “Comparison of the spectral information content of Landsat Thematic Mapper and SPOT for three different sites in the Phoenix, Arizona, region,” Photogram. Eng. Remote Sensing 54, 1699–1708 (1988).

Other (15)

G. Asrar, ed., Theory and Applications of Optical Remote Sensing (Wiley, New York, 1989).

L. E. Hoff, J. R. Evans, L. E. Bunny, “Detection of targets in terrain clutter by using multispectral infrared image processing,” in Signal and Data Processing of Small Targets 1991, O. E. Drummond, ed., Proc. SPIE1481, 98–109 (1991).
[Crossref]

A. van Meeteren, S. Mangoubi, “Recognition of thermal image: effects of scan-line density and signal-to-noise ratio,” in Assessment of Imaging Systems II, T. L. Williams, ed., Proc. SPIE274, 230–238 (1981).
[Crossref]

S. T. Tou, R. C. Gonzalez, Pattern Recognition Principles (Addison-Wesley, Reading, Mass., 1974).

M. F. Daemi, “Information theory and pattern recognition,” Ph.D. dissertation (University of Nottingham, Nottingham, UK, 1990).

J. Lawson, G. Uhlenbeck, Threshold Signals (McGraw-Hill, New York, 1950), pp. 161–163. (Reprinted by Dover, New York, 1965.)

J. A. Saghri, P. S. Cheatham, A. Habibi, “An HVS-based image quality measure,” in Applications of Digital Image Processing XI, A. G Tescher ed., Proc. SPIE974, 404–412 (1988).
[Crossref]

I. Overington, Vision and Acquisition (Pentech, London, 1976).

“Colorimetry,” CIE Publication 15.2, 2nd ed. (CIE, Paris, 1986).

“CIE Standard CIE s002—Colorimetric Observers,” CIE Publication s002, 1st ed. (CIE, Paris, 1986).

“An analytic model for describing the influence of lighting parameters upon visual performance,” CIE Publication 19/2.2 (TC-3.1) (CIE, Paris, 1981).

J. Johnson, “Analysis of image forming systems,” in Proceedings of the Image Intensifier Symposium, 1958, pp. 249–273.

“Night vision laboratory static performance model for thermal viewing systems,” (U.S. Army Electronics Command, Fort Monmouth, N.J., 1975).

F. A. Rosell, R. H. Wilson, “Recent psychophysical experiments and the display signal-to-noise ratio concept,” in Perception of Displayed Information, L. M. Biberman, ed. (Plenum, New York, 1973), pp. 167–232.

G. R. Gerhart, “Target acquisition criteria for human observers,” in Proceedings of the Human Factors Society 1991 (Human Factors Society, Santa Monica, Calif., 1991), Vol. 2, pp. 1517–1521.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Probability of correct classification versus contrast as given by Blackwell8 and as expressed in Eq. (16), with the Bayes classifier and two pattern classes. Curve a, p=Φ(log ΔI, 0.0363, 0.145); curve b, p=Φ(1/2 log ΔI, 0.0363, 0.145); curve c, p =Φ(1/2 log ΔI, 0.0363, 0.072).

Fig. 2
Fig. 2

(a) Results of computer calculations concerning contrast thresholds for monospectral target detection. The contrast sensitivity is plotted versus observation distance for two levels of background radiance L1 (arbitrary units). Blur spot size is 17. See explanations in the text. (b) For comparison, the results from Ref. 5.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

J12=x[p1(x)-p2(x)]lnp1(x)p2(x)dx.
J12=12 1σ12+1σ22(I1-I2)2+σ1σ2-σ2σ12.
J12=(I1-I2)2σ2.
Jab=i,jJ12(i, j),
Riccoslaw:1cααb2 1σ,ααb,
Piperslaw:1cααb 1σ,ααb,
p=1γ2π -x exp-α-α¯2γ2dα,
J12(x)=(L1*-L2*)2σ2,
Jab=xJ12(x)=K2 α2αb2 J12(x),
Jab=K2ααb2 ΔL2σ2,
ΔL=(L2*-L1*).
1ΔL=MK ααb 1σ.
1c=L1ΔLL1 ααb 1σ.
J12(x)=ΔL2σ2 α2αb2,
Jab=K2ααb4 ΔL2σ2.
1c=L1ΔLL1ααb2 1σ,
p(e)=1/2rij1/2π exp(-y2/2)dy,
p=1-p(e)=Φ(12J12, 0, 1)
p=Φ[log(ΔL), 0, log(σ)],
p=Φ[12 log(c), 0, log(σ)]=Φ[12 log(c/c¯), log(c¯), log(σ)].
p=Φ[12 log(α), α¯, γ]
Dm(x, y)=Di(x, y)PSF(x, y),
PSF(x, y)=12πρ exp-x2+y22ρ2.

Metrics