Abstract

In motion perception, luminance-defined stimuli (first-order motion) are distinguished from stimuli defined by more complex attributes (second-order motion), because they differ in their processing requirements. For instance, a two-layer model with the output of an array of elementary motion detectors (EMD’s) feeding into a second array of EMD’s has been proposed to account for seeing the movement of motion-defined objects. The question is raised whether this processing scheme is operating across the whole visual field or whether second-order motion perception is restricted to the fovea. The detection, orientation discrimination, and motion direction discrimination of oblique, vertically moving bars was tested at horizontal eccentricities between 0° and 16°. Bars were defined on a dynamic noise background by an area of static dots (drift-balanced motion) or by coherent dot motion either in the direction of the bar motion (Fourier motion) or in the orthogonal direction (theta motion). Coherence thresholds for direction discrimination are severely impaired in the periphery for both types of second-order motion but not for Fourier motion, whereas orientation discrimination and detection marginally decline for all three bar types when the stimuli are presented further out in the periphery. In a control experiment it is shown that this result cannot be due entirely to the changes in spatial scale of the peripheral visual system. The facts that motion-defined objects can be detected in the periphery and that their orientation can be detected, but not their direction of motion, supports the view that the two-layer system suggested for the processing of theta motion is restricted to the central region of the visual field.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vis. 4, 103–129 (1989).
    [CrossRef]
  2. J. M. Zanker, “Of models and men: mechanisms of human motion perception,” in Early Vision and Beyond, T. V. Papathomas, C. Chubb, A. Gorea, E. Kowler, eds. (MIT Press, Cambridge, Mass., 1995), p. 156.
  3. A. M. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
    [CrossRef] [PubMed]
  4. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
    [CrossRef] [PubMed]
  5. P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture-defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
    [CrossRef] [PubMed]
  6. D. R. Badcock, A. M. Derrington, “Detecting the displacements of spatial beats: no role for distortion products,” Vision Res. 29, 731–739 (1989).
    [CrossRef]
  7. J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
    [CrossRef] [PubMed]
  8. A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
    [CrossRef] [PubMed]
  9. J. McCarthy, A. Pantle, A. Pinkus, “Detection and direction discrimination performance with flicker gratings in peripheral vision,” Vision Res. 34, 763–773 (1994).
    [CrossRef] [PubMed]
  10. A. T. Smith, R. F. Hess, C. L. Baker, “Direction identification thresholds for second-order motion in central and peripheral vision,” J. Opt. Soc. Am. A 11, 506–514 (1994).
    [CrossRef]
  11. J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
    [CrossRef] [PubMed]
  12. F. A. Butzer, U. J. Ilg, J. M. Zanker, “Peripheral and central vision in psychophysics and oculomotor responses,” in Goettingen Neurobiology Report 1995, N. Elsner, R. Menzel, eds. (Georg Thieme Verlag, Stuttgart, 1995), p. 480.
  13. J. M. Zanker, “Is theta-motion detected in the peripheral visual field?,” Invest. Ophthalmol. Visual Sci. 36, S52 (1995).
  14. R. M. Rose, D. Y. Teller, P. Rendleman, “Statistical properties of staircase estimates,” Percept. Psychophys. 8, 199–204 (1970).
    [CrossRef]
  15. J. M. Zanker, “Does motion perception follow Weber’s law?” Perception 24, 363–372 (1995).
  16. G. Westheimer, “The spatial grain of the perifoveal visual field,” Vision Res. 22, 157–162 (1982).
    [CrossRef] [PubMed]
  17. J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
    [CrossRef] [PubMed]
  18. Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
    [CrossRef] [PubMed]
  19. H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
  20. A. M. Derrington, D. R. Badcock, “Detection of spatial beats: nonlinearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
    [CrossRef]
  21. G. R. Stoner, T. D. Albright, “Image segmentation cues in motion processing: implications for modularity in vision,” J. Cogn. Neurosci. 5, 129–149 (1993).
  22. J. M. Zanker, “On the elementary mechanism underlying secondary motion processing,” Philos. Trans. R. Soc. London Ser. B 351, 1725–1736 (1996).
    [CrossRef]
  23. O. J. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993).
    [CrossRef] [PubMed]

1996 (1)

J. M. Zanker, “On the elementary mechanism underlying secondary motion processing,” Philos. Trans. R. Soc. London Ser. B 351, 1725–1736 (1996).
[CrossRef]

1995 (4)

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
[CrossRef] [PubMed]

J. M. Zanker, “Is theta-motion detected in the peripheral visual field?,” Invest. Ophthalmol. Visual Sci. 36, S52 (1995).

J. M. Zanker, “Does motion perception follow Weber’s law?” Perception 24, 363–372 (1995).

1994 (2)

J. McCarthy, A. Pantle, A. Pinkus, “Detection and direction discrimination performance with flicker gratings in peripheral vision,” Vision Res. 34, 763–773 (1994).
[CrossRef] [PubMed]

A. T. Smith, R. F. Hess, C. L. Baker, “Direction identification thresholds for second-order motion in central and peripheral vision,” J. Opt. Soc. Am. A 11, 506–514 (1994).
[CrossRef]

1993 (4)

O. J. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993).
[CrossRef] [PubMed]

G. R. Stoner, T. D. Albright, “Image segmentation cues in motion processing: implications for modularity in vision,” J. Cogn. Neurosci. 5, 129–149 (1993).

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture-defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
[CrossRef] [PubMed]

1992 (2)

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).

A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
[CrossRef] [PubMed]

1989 (2)

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vis. 4, 103–129 (1989).
[CrossRef]

D. R. Badcock, A. M. Derrington, “Detecting the displacements of spatial beats: no role for distortion products,” Vision Res. 29, 731–739 (1989).
[CrossRef]

1988 (1)

1986 (1)

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: nonlinearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
[CrossRef]

1984 (1)

A. M. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

1982 (1)

G. Westheimer, “The spatial grain of the perifoveal visual field,” Vision Res. 22, 157–162 (1982).
[CrossRef] [PubMed]

1979 (1)

J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[CrossRef] [PubMed]

1970 (1)

R. M. Rose, D. Y. Teller, P. Rendleman, “Statistical properties of staircase estimates,” Percept. Psychophys. 8, 199–204 (1970).
[CrossRef]

Albright, T. D.

G. R. Stoner, T. D. Albright, “Image segmentation cues in motion processing: implications for modularity in vision,” J. Cogn. Neurosci. 5, 129–149 (1993).

Badcock, D. R.

D. R. Badcock, A. M. Derrington, “Detecting the displacements of spatial beats: no role for distortion products,” Vision Res. 29, 731–739 (1989).
[CrossRef]

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: nonlinearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
[CrossRef]

Baker, C. L.

Braddick, O. J.

O. J. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993).
[CrossRef] [PubMed]

Butzer, F. A.

F. A. Butzer, U. J. Ilg, J. M. Zanker, “Peripheral and central vision in psychophysics and oculomotor responses,” in Goettingen Neurobiology Report 1995, N. Elsner, R. Menzel, eds. (Georg Thieme Verlag, Stuttgart, 1995), p. 480.

Cavanagh, P.

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vis. 4, 103–129 (1989).
[CrossRef]

Chubb, C.

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture-defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
[CrossRef] [PubMed]

Derrington, A. M.

D. R. Badcock, A. M. Derrington, “Detecting the displacements of spatial beats: no role for distortion products,” Vision Res. 29, 731–739 (1989).
[CrossRef]

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: nonlinearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
[CrossRef]

Ferrera, V. P.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).

Hess, R. F.

Ilg, U. J.

F. A. Butzer, U. J. Ilg, J. M. Zanker, “Peripheral and central vision in psychophysics and oculomotor responses,” in Goettingen Neurobiology Report 1995, N. Elsner, R. Menzel, eds. (Georg Thieme Verlag, Stuttgart, 1995), p. 480.

Koenderink, J. J.

A. M. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

Lelkens, A. M. M.

A. M. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

Lu, Z.-L.

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

Mather, G.

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vis. 4, 103–129 (1989).
[CrossRef]

McCarthy, J.

J. McCarthy, A. Pantle, A. Pinkus, “Detection and direction discrimination performance with flicker gratings in peripheral vision,” Vision Res. 34, 763–773 (1994).
[CrossRef] [PubMed]

Pantle, A.

J. McCarthy, A. Pantle, A. Pinkus, “Detection and direction discrimination performance with flicker gratings in peripheral vision,” Vision Res. 34, 763–773 (1994).
[CrossRef] [PubMed]

A. Pantle, “Immobility of some second-order stimuli in human peripheral vision,” J. Opt. Soc. Am. A 9, 863–867 (1992).
[CrossRef] [PubMed]

Pinkus, A.

J. McCarthy, A. Pantle, A. Pinkus, “Detection and direction discrimination performance with flicker gratings in peripheral vision,” Vision Res. 34, 763–773 (1994).
[CrossRef] [PubMed]

Rendleman, P.

R. M. Rose, D. Y. Teller, P. Rendleman, “Statistical properties of staircase estimates,” Percept. Psychophys. 8, 199–204 (1970).
[CrossRef]

Rose, R. M.

R. M. Rose, D. Y. Teller, P. Rendleman, “Statistical properties of staircase estimates,” Percept. Psychophys. 8, 199–204 (1970).
[CrossRef]

Rovamo, J.

J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[CrossRef] [PubMed]

Smith, A. T.

Solomon, J. A.

J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
[CrossRef] [PubMed]

Sperling, G.

J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture-defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
[CrossRef] [PubMed]

Stoner, G. R.

G. R. Stoner, T. D. Albright, “Image segmentation cues in motion processing: implications for modularity in vision,” J. Cogn. Neurosci. 5, 129–149 (1993).

Teller, D. Y.

R. M. Rose, D. Y. Teller, P. Rendleman, “Statistical properties of staircase estimates,” Percept. Psychophys. 8, 199–204 (1970).
[CrossRef]

Virsu, V.

J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[CrossRef] [PubMed]

Werkhoven, P.

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture-defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

Westheimer, G.

G. Westheimer, “The spatial grain of the perifoveal visual field,” Vision Res. 22, 157–162 (1982).
[CrossRef] [PubMed]

Wilson, H. R.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).

Yo, C.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).

Zanker, J. M.

J. M. Zanker, “On the elementary mechanism underlying secondary motion processing,” Philos. Trans. R. Soc. London Ser. B 351, 1725–1736 (1996).
[CrossRef]

J. M. Zanker, “Is theta-motion detected in the peripheral visual field?,” Invest. Ophthalmol. Visual Sci. 36, S52 (1995).

J. M. Zanker, “Does motion perception follow Weber’s law?” Perception 24, 363–372 (1995).

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
[CrossRef] [PubMed]

J. M. Zanker, “Of models and men: mechanisms of human motion perception,” in Early Vision and Beyond, T. V. Papathomas, C. Chubb, A. Gorea, E. Kowler, eds. (MIT Press, Cambridge, Mass., 1995), p. 156.

F. A. Butzer, U. J. Ilg, J. M. Zanker, “Peripheral and central vision in psychophysics and oculomotor responses,” in Goettingen Neurobiology Report 1995, N. Elsner, R. Menzel, eds. (Georg Thieme Verlag, Stuttgart, 1995), p. 480.

Exp. Brain Res. (1)

J. Rovamo, V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (1)

J. M. Zanker, “Is theta-motion detected in the peripheral visual field?,” Invest. Ophthalmol. Visual Sci. 36, S52 (1995).

J. Cogn. Neurosci. (1)

G. R. Stoner, T. D. Albright, “Image segmentation cues in motion processing: implications for modularity in vision,” J. Cogn. Neurosci. 5, 129–149 (1993).

J. Opt. Soc. Am. A (3)

Percept. Psychophys. (1)

R. M. Rose, D. Y. Teller, P. Rendleman, “Statistical properties of staircase estimates,” Percept. Psychophys. 8, 199–204 (1970).
[CrossRef]

Perception (1)

J. M. Zanker, “Does motion perception follow Weber’s law?” Perception 24, 363–372 (1995).

Philos. Trans. R. Soc. London Ser. B (1)

J. M. Zanker, “On the elementary mechanism underlying secondary motion processing,” Philos. Trans. R. Soc. London Ser. B 351, 1725–1736 (1996).
[CrossRef]

Spatial Vis. (1)

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vis. 4, 103–129 (1989).
[CrossRef]

Trends Neurosci. (1)

O. J. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993).
[CrossRef] [PubMed]

Vision Res. (9)

A. M. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: nonlinearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
[CrossRef]

J. McCarthy, A. Pantle, A. Pinkus, “Detection and direction discrimination performance with flicker gratings in peripheral vision,” Vision Res. 34, 763–773 (1994).
[CrossRef] [PubMed]

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture-defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

D. R. Badcock, A. M. Derrington, “Detecting the displacements of spatial beats: no role for distortion products,” Vision Res. 29, 731–739 (1989).
[CrossRef]

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
[CrossRef] [PubMed]

G. Westheimer, “The spatial grain of the perifoveal visual field,” Vision Res. 22, 157–162 (1982).
[CrossRef] [PubMed]

J. A. Solomon, G. Sperling, “1st- and 2nd-order motion and texture resolution in central and peripheral vision,” Vision Res. 35, 59–64 (1995).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

Visual Neurosci. (1)

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).

Other (2)

F. A. Butzer, U. J. Ilg, J. M. Zanker, “Peripheral and central vision in psychophysics and oculomotor responses,” in Goettingen Neurobiology Report 1995, N. Elsner, R. Menzel, eds. (Georg Thieme Verlag, Stuttgart, 1995), p. 480.

J. M. Zanker, “Of models and men: mechanisms of human motion perception,” in Early Vision and Beyond, T. V. Papathomas, C. Chubb, A. Gorea, E. Kowler, eds. (MIT Press, Cambridge, Mass., 1995), p. 156.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic sketch of stimuli; RDK’s covered a stimulus field of 23.7°×15.9° oblique bars (typically 1.4°×2.8°) and were moving vertically, at a variable eccentricity from the fixation target. The orientation of the bar, the direction of motion, (large arrows), and the stimulus type (small arrows and small dots) was varied; the dots within the object borders were moving together with the object (Φ) or horizontally (θ) or were static (μ), while the dots in the background jumped around erratically (dynamic noise).

Fig. 2
Fig. 2

Data set from subject JMZ for the default stimulus conditions. Coherence thresholds for direction discrimination (a) decline only slowly with increasing retinal eccentricity between 0° and 16° for Φ motion (dots) but fall steeply for μ motion (squares) and θ motion (triangles), where floor levels are reached at 8° eccentricity; thresholds for detection (c) and orientation discrimination (d) decrease slowly with increasing eccentricity for all motion types. Discrimination performance, with the variation in object visibility taken into account, is calculated as the ratio between discrimination threshold and detection threshold; the resulting relative sensitivity is plotted as function of eccentricity for direction discrimination (b) and orientation discrimination (e). For this subject and this object shape, the sensitivity in the direction task clearly decreases when the object is presented outside the perifoveal region for μ and θ motion but stays close to unity for Φ motion.

Fig. 3
Fig. 3

Average results from five subjects (SEM’s given as error bars) tested with the complete set of stimuli under standard conditions; relative sensitivity plotted as function of retinal eccentricity for the three stimulus types (symbols as in Fig. 2). In the direction-discrimination task (a) performance declines rapidly for μ and θ motion but not for Φ motion, for which thresholds tend to be better for direction discrimination than for detection. In the orientation-discrimination task (b), relative sensitivity decreases slowly with increasing eccentricity for all three motion types or even seems to be independent of retinal position, as in case of μ motion.

Fig. 4
Fig. 4

Relative sensitivity for direction discrimination with three different stimulus shapes (a)–(c) for subject JMZ, and averages across these conditions for orientation discrimination (d) and direction discrimination (e). (a) Square-shaped objects; (b) long, thin bars (aspect ratio 4:1); (c) standard conditions with short, thick bars [aspect ratio 2:1, same figure as 2(b)]. The data for the three conditions are quite similar and the average curves clearly support the notion that direction discrimination declines more rapidly for μ and θ motion than for Φ motion but that orientation discrimination is basically the same for all three motion types. (d) and (e), Relative sensitivity (ratio between discrimination and detection threshold) for orientation discrimination and direction discrimination averaged across conditions, with SEM’s.

Fig. 5
Fig. 5

Average (n=3, error bars indicate SEM’s) coherence thresholds for direction discrimination (a), detection (c), and orientation discrimination (d) and relative sensitivity for the two discrimination tasks (b), (e), for each of the three motion types (indicated by bar textures given in inset) under four stimulus conditions: small patterns seen from far in the fovea, small patterns seen close up in the fovea, small patterns seen close up in the periphery, and large patterns seen close up in the periphery (left to right, as labeled at the bottom). Direction discrimination of μ and θ motion is greatly affected by position within the visual field but not by stimulus dimensions at a given position.    

Metrics