Abstract

Hollow glass waveguides with three dielectric layers are fabricated with a chemical vapor deposition technique. The waveguides have an inner three-layer stack of aluminum oxide and titanium oxide, with the thickness optimized for the 3-μm wavelength of a Er:YAG laser. The measured attenuation spectra of the waveguides in the mid-infrared region show interference peaks that are due to the multiple dielectric layers and also exhibit a low-loss region at the design wavelength of 3 μm. The theoretical evaluation of the waveguide loss, including the inner surface roughness of the guide, shows that the roughness strongly affects the transmission losses of the multilayer-coated waveguides.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
    [Crossref] [PubMed]
  2. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
    [Crossref] [PubMed]
  3. Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
    [Crossref] [PubMed]
  4. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [Crossref]
  5. M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
    [Crossref]
  6. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
    [Crossref] [PubMed]
  7. Y. Matsuura, J. A. Harrington, “Infrared hollow glass waveguides fabricated by chemical vapor deposition,” Opt. Lett. 20, 2078–2080 (1995).
    [Crossref] [PubMed]
  8. H. O. Pierson, Handbook of Chemical Vapor Deposition (Noyes, Park Ridge, Ill., 1992).
  9. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [Crossref]
  10. M. Miyagi, “Waveguide loss evaluation in circular hollow waveguides and its ray optical treatment,” J. Lightwave Technol. LT-3, 303–307 (1985).
    [Crossref]
  11. H. E. Bennett, “Specular reflectance of aluminized ground glass and the height distribution of surface irregularities,” J. Opt. Soc. Am. 53, 1389–1394 (1963).
    [Crossref]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1985).
  13. T. Maruyama, S. Arai, “Aluminum oxide thin films prepared by chemical vapor deposition from aluminum acetylacetonate,” Appl. Phys. Lett. 60, 322–323 (1992).
    [Crossref]
  14. Jian-Ping Lin, Jenqdaw Wang, Rishi Raj, “Solution precursor chemical vapor deposition of titanium oxide thin films,” Thin Solid Films 204, L13–17 (1991).
    [Crossref]
  15. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).

1995 (2)

1994 (1)

1993 (1)

1992 (1)

T. Maruyama, S. Arai, “Aluminum oxide thin films prepared by chemical vapor deposition from aluminum acetylacetonate,” Appl. Phys. Lett. 60, 322–323 (1992).
[Crossref]

1991 (1)

Jian-Ping Lin, Jenqdaw Wang, Rishi Raj, “Solution precursor chemical vapor deposition of titanium oxide thin films,” Thin Solid Films 204, L13–17 (1991).
[Crossref]

1990 (1)

1989 (1)

1985 (1)

M. Miyagi, “Waveguide loss evaluation in circular hollow waveguides and its ray optical treatment,” J. Lightwave Technol. LT-3, 303–307 (1985).
[Crossref]

1984 (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[Crossref]

1983 (1)

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[Crossref]

1963 (1)

Abel, T.

Aizawa, Y.

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[Crossref]

Arai, S.

T. Maruyama, S. Arai, “Aluminum oxide thin films prepared by chemical vapor deposition from aluminum acetylacetonate,” Appl. Phys. Lett. 60, 322–323 (1992).
[Crossref]

Bennett, H. E.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1985).

Croitoru, N.

Dror, J.

Gannot, I.

Harrington, J. A.

Hirsch, J.

Hongo, A.

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[Crossref]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[Crossref]

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[Crossref]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[Crossref]

Lin, Jian-Ping

Jian-Ping Lin, Jenqdaw Wang, Rishi Raj, “Solution precursor chemical vapor deposition of titanium oxide thin films,” Thin Solid Films 204, L13–17 (1991).
[Crossref]

Maruyama, T.

T. Maruyama, S. Arai, “Aluminum oxide thin films prepared by chemical vapor deposition from aluminum acetylacetonate,” Appl. Phys. Lett. 60, 322–323 (1992).
[Crossref]

Matsuura, Y.

Miyagi, M.

Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[Crossref] [PubMed]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[Crossref]

M. Miyagi, “Waveguide loss evaluation in circular hollow waveguides and its ray optical treatment,” J. Lightwave Technol. LT-3, 303–307 (1985).
[Crossref]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[Crossref]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[Crossref]

Pierson, H. O.

H. O. Pierson, Handbook of Chemical Vapor Deposition (Noyes, Park Ridge, Ill., 1992).

Raj, Rishi

Jian-Ping Lin, Jenqdaw Wang, Rishi Raj, “Solution precursor chemical vapor deposition of titanium oxide thin films,” Thin Solid Films 204, L13–17 (1991).
[Crossref]

Saito, M.

Wang, Jenqdaw

Jian-Ping Lin, Jenqdaw Wang, Rishi Raj, “Solution precursor chemical vapor deposition of titanium oxide thin films,” Thin Solid Films 204, L13–17 (1991).
[Crossref]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1985).

Appl. Opt. (3)

Appl. Phys. Lett. (2)

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[Crossref]

T. Maruyama, S. Arai, “Aluminum oxide thin films prepared by chemical vapor deposition from aluminum acetylacetonate,” Appl. Phys. Lett. 60, 322–323 (1992).
[Crossref]

J. Lightwave Technol. (2)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[Crossref]

M. Miyagi, “Waveguide loss evaluation in circular hollow waveguides and its ray optical treatment,” J. Lightwave Technol. LT-3, 303–307 (1985).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Thin Solid Films (1)

Jian-Ping Lin, Jenqdaw Wang, Rishi Raj, “Solution precursor chemical vapor deposition of titanium oxide thin films,” Thin Solid Films 204, L13–17 (1991).
[Crossref]

Other (3)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).

H. O. Pierson, Handbook of Chemical Vapor Deposition (Noyes, Park Ridge, Ill., 1992).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Reflectance and transmittance of light incident on a rough boundary.

Fig. 2
Fig. 2

Reflectance of a multilayer coating showing the key parameters used in our calculations.

Fig. 3
Fig. 3

CVD setup for the fabrication of Al2O3 films inside hollow glass waveguides.

Fig. 4
Fig. 4

Spectral losses of the hollow glass waveguide with a 700-μm bore and 50-cm length. The waveguide has an inner Al2O3 coating with an estimated thickness of 0.50 μm.

Fig. 5
Fig. 5

Spectral losses of the Al2O3/TiO2-coated waveguide. The estimated thickness of the films are 0.50 μm for Al2O3 and 0.31 μm for the TiO2 layer.

Fig. 6
Fig. 6

Spectral losses of the hollow waveguide with three-layer, Al2O3/TiO2/Al2O3, coating. The thickness of the third, Al2O3, layer is 0.32 μm.

Fig. 7
Fig. 7

Theoretical losses of the Al2O3/TiO2 multilayer-coated waveguide and the Al2O3 single-layer-coated waveguide.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d1=πk0anL2-1,
d2=πk0anH2-1,
d3=2nL2-1ak0×tan-1nL2(nL2-1)1/4 nLnHnH2-1nL2-1,
2α(θ)=1-R(θ)a cot θ,
θ0=tan-1 2u0k0a,
ϕr(x)=2k0f(x)ni cos φi,
ϕt(x)=k0f(x)(ni cos φi-nj cos φj),
rij=rij0Aij,
tij=tij0Bij.
Aij=exp[-12(2k0σni cos φi)2],
Bij=exp{-12[k0σ(ni cos φi-nj cos φj)]2},
rk=rk,k+1Ak,k+1+(1-rk, k+12)Bk,k+12rk+1 exp(-jβk+1)1+rk,k+1Ak,k+1rk+1 exp(-jβk+1),
β=2k0nkdk cos φk,

Metrics