Abstract

We simultaneously measured detection and identification performance by using isoluminant red–green (RG) and achromatic flickering stimuli and fitted these data with a modified line-element model that does not make high-threshold assumptions. The modeling shows that detection and identification data are adequately described by postulating only two underlying temporal filters each for RG and achromatic vision, even when more than two threshold classifications are evident. We use a spatial frequency of 1.5 cycles per degree (c/deg) and compare the derived temporal impulse response functions with those obtained previously with the use of 0.25-c/deg stimuli under otherwise identical conditions [J. Opt. Soc. Am. A 13, 1969 (1996)]. We find that at 1.5 c/deg the luminance impulse response functions peak later and integrate out to longer times compared with those measured at 0.25 c/deg. For RG stimuli, although their relative overall sensitivities change, the impulse response functions are similar across spatial frequency, indicating a constancy of chromatic temporal properties across spatial scales. In a second experiment, we measured RG and achromatic flicker discrimination over a wide range of suprathreshold contrasts. These data suggest a common nonlinear contrast response function operating after initial temporal filtering. Using a ratio model of speed perception in which both RG and achromatic filters are combined at a common motion site, we can predict (1) the perceived slowing of RG stimuli compared with the perceived drift of achromatic drifting stimuli, (2) the contrast dependency of speed perception for RG and achromatic drifting stimuli, and (3) how this dependency changes with base speed. Thus we conclude that there is no need to postulate separate mechanisms for fast and slow motion [Nature (London) 367, 268 (1994)], since a unified ratio model can explain both RG and achromatic contrast–speed dependency.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Metha, K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1969–1980 (1996).
    [CrossRef]
  2. M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
    [CrossRef] [PubMed]
  3. R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
    [CrossRef] [PubMed]
  4. S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
    [CrossRef] [PubMed]
  5. P. Thompson, “The coding of velocity of movement in the human visual system,” Vision Res. 24, 41–45 (1984).
    [CrossRef] [PubMed]
  6. S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
    [CrossRef] [PubMed]
  7. E. H. Adelson, J. R. Bergen, “Spatio-temporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [CrossRef] [PubMed]
  8. A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
    [CrossRef] [PubMed]
  9. N. V. S. Graham, Visual Pattern Analysers, Oxford Psychology Series 16 (Oxford U. Press, New York, 1989).
  10. M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vision Res. 34, 331–341 (1994).
    [CrossRef] [PubMed]
  11. M. A. Losada, K. T. Mullen, “Color and luminance spatial tuning estimated by noise masking in the absence of off-frequency looking,” J. Opt. Soc. Am. A 12, 250–260 (1995).
    [CrossRef]
  12. J. Yang, W. Makous, “Spatiotemporal separability in contrast sensitivity,” Vision Res. 34, 2569–2576 (1994).
    [CrossRef] [PubMed]
  13. P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
    [CrossRef] [PubMed]
  14. K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
    [CrossRef] [PubMed]
  15. G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
    [CrossRef] [PubMed]
  16. P. G. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
    [CrossRef] [PubMed]
  17. L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
    [CrossRef] [PubMed]
  18. M. J. Hawken, K. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
    [CrossRef]
  19. K. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic, and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
    [CrossRef] [PubMed]
  20. P. G. Thompson, L. S. Stone, S. Swash, “Speed estimates from grating patches are not contrast-normalized,” Vision Res. 36, 667–674 (1996).
    [CrossRef] [PubMed]
  21. A. B. Metha, “Detection and direction discrimination in terms of post-receptoral mechanisms,” Ph.D. dissertation (The University of Melbourne, Melbourne, Australia, 1994).
  22. A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).
    [CrossRef]
  23. H. L. DeVries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).
  24. J. Pokorny, Q. Jin, V. C. Smith, “Spectral-luminosity functions, scalar linearity, and chromatic adaptation,” J. Opt. Soc. Am. A 10, 1304–1313 (1993).
    [CrossRef] [PubMed]
  25. C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).
  26. D. Regan, C. W. Tyler, “Some dynamic features of color vision,” Vision Res. 11, 1307–1324 (1971).
    [CrossRef] [PubMed]
  27. P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
    [CrossRef] [PubMed]
  28. W. H. Swanson, T. Ueno, V. C. Smith, J. Pokorny, “Temporal modulation sensitivity and pulse detection thresholds for chromatic and luminance perturbations,” J. Opt. Soc. Am. A 4, 1992–2005 (1987).
    [CrossRef] [PubMed]
  29. P. Kaiser, M. Ayama, R. L. P. Vimal, “Flicker photometry: residual minimum flicker,” J. Opt. Soc. Am. A 3, 1989–1993 (1986).
    [CrossRef] [PubMed]
  30. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
    [CrossRef] [PubMed]
  31. B. B. Lee, T. Yeh, J. Kremers, V. C. Smith, J. Pokorny, “The central filter acting upon parvocellular pathway signals,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 912 (1993).
  32. V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. (London) 458, 191–221 (1992).
  33. V. C. Smith, J. Pokorny, M. Davis, T. Yeh, “Mechanisms subserving temporal modulation sensitivity in silent-cone substitution,” J. Opt. Soc. Am. A 12, 241–249 (1995).
    [CrossRef]
  34. K. T. Mullen, J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733–742 (1990).
    [CrossRef] [PubMed]
  35. A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
    [CrossRef]
  36. K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).
  37. A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
    [CrossRef]
  38. R. F. Hess, G. T. Plant, “Temporal frequency discrimination in human vision: evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493–1500 (1985).
    [CrossRef]
  39. J. J. Vos, “Line elements and physiological models of color vision,” Color Res. Appl. 4, 208–216 (1979).
    [CrossRef]
  40. B. A. Wandell, “Measurement of small color differences,” Psychol. Rev. 89, 281–302 (1982).
    [CrossRef] [PubMed]
  41. H. R. Wilson, “Responses of spatial mechanisms can explain hyperacuity,” Vision Res. 26, 453–469 (1986).
    [CrossRef] [PubMed]
  42. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).
  43. G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
    [CrossRef] [PubMed]
  44. J. Gottesman, G. S. Rubin, G. E. Legge, “A power law for perceived contrast in human vision,” Vision Res. 21, 791–799 (1981).
    [CrossRef] [PubMed]
  45. D. Laming, “Theoretical basis of the processing of simple visual stimuli,” in Vision and Visual Dysfunction, Limits of Vision, J. J. Kulikowski, V. Walsh, I. J. Murray, eds. (CRC Press, Boca Raton, Fla., 1991), Vol. 5, pp. 23–34.
  46. M. G. Harris, “Velocity specificity of the flicker to pattern sensitivity ratio in human vision,” Vision Res. 20, 687–691 (1980).
    [CrossRef] [PubMed]
  47. A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
    [CrossRef] [PubMed]
  48. P. Thompson, L. S. Stone, “Contrast dependence of speed perception: effects of temporal presentation,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 973 (1992).
  49. K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the preception of motion,” Ophthalmic Physiol. Opt. 12, 201–205 (1992).
    [CrossRef] [PubMed]
  50. L. J. Croner, K. Purpura, E. Kaplan, “Response variability in retinal ganglion cells of primates,” Proc. Natl. Acad. Sci. USA 90, 8128–8130 (1993).
    [CrossRef] [PubMed]
  51. D. J. Tolhurst, J. A. Movshon, I. D. Thompson, “The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast,” Exp. Brain Res. 41, 405–418 (1981).
  52. D. H. Kelly, “Theory of flicker and transient responses. II. Counterphase gratings,” J. Opt. Soc. Am. A 61, 632–640 (1971).
    [CrossRef]
  53. D. J. Tolhurst, “Reaction times in the detection of gratings by human observers: a probabilistic mechanism,” Vision Res. 15, 1143–1149 (1975).
    [CrossRef] [PubMed]
  54. A. B. Watson, J. Nachmias, “Patterns of temporal interaction in the detection of gratings,” Vision Res. 17, 893–902 (1977).
    [CrossRef] [PubMed]
  55. A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984).
  56. K. H. Foster, J. P. Gaska, M. Nagler, D. A. Pollen, “Spatial- and temporal-frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey,” J. Physiol. (London) 365, 331–363 (1985).
  57. B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. (London) 414, 223–243 (1989).
  58. M. J. Hawken, R. M. Shapley, D. H. Grosof, “Temporal frequency tuning of neurones in macaque V1: effects of luminance contrast and chromaticity,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 955 (1992).
  59. G. B. Henning, A. M. Derrington, “Speed, spatial-frequency, and temporal-frequency comparisons in luminance and colour gratings,” Vision Res. 34, 2093–2101 (1994).
    [CrossRef] [PubMed]
  60. A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
    [CrossRef] [PubMed]

1996 (3)

K. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic, and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

P. G. Thompson, L. S. Stone, S. Swash, “Speed estimates from grating patches are not contrast-normalized,” Vision Res. 36, 667–674 (1996).
[CrossRef] [PubMed]

A. B. Metha, K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1969–1980 (1996).
[CrossRef]

1995 (4)

V. C. Smith, J. Pokorny, M. Davis, T. Yeh, “Mechanisms subserving temporal modulation sensitivity in silent-cone substitution,” J. Opt. Soc. Am. A 12, 241–249 (1995).
[CrossRef]

M. A. Losada, K. T. Mullen, “Color and luminance spatial tuning estimated by noise masking in the absence of off-frequency looking,” J. Opt. Soc. Am. A 12, 250–260 (1995).
[CrossRef]

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
[CrossRef] [PubMed]

1994 (6)

M. J. Hawken, K. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
[CrossRef] [PubMed]

M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vision Res. 34, 331–341 (1994).
[CrossRef] [PubMed]

J. Yang, W. Makous, “Spatiotemporal separability in contrast sensitivity,” Vision Res. 34, 2569–2576 (1994).
[CrossRef] [PubMed]

G. B. Henning, A. M. Derrington, “Speed, spatial-frequency, and temporal-frequency comparisons in luminance and colour gratings,” Vision Res. 34, 2093–2101 (1994).
[CrossRef] [PubMed]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

1993 (4)

B. B. Lee, T. Yeh, J. Kremers, V. C. Smith, J. Pokorny, “The central filter acting upon parvocellular pathway signals,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 912 (1993).

J. Pokorny, Q. Jin, V. C. Smith, “Spectral-luminosity functions, scalar linearity, and chromatic adaptation,” J. Opt. Soc. Am. A 10, 1304–1313 (1993).
[CrossRef] [PubMed]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).
[CrossRef]

L. J. Croner, K. Purpura, E. Kaplan, “Response variability in retinal ganglion cells of primates,” Proc. Natl. Acad. Sci. USA 90, 8128–8130 (1993).
[CrossRef] [PubMed]

1992 (8)

P. Thompson, L. S. Stone, “Contrast dependence of speed perception: effects of temporal presentation,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 973 (1992).

K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the preception of motion,” Ophthalmic Physiol. Opt. 12, 201–205 (1992).
[CrossRef] [PubMed]

L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
[CrossRef] [PubMed]

M. J. Hawken, R. M. Shapley, D. H. Grosof, “Temporal frequency tuning of neurones in macaque V1: effects of luminance contrast and chromaticity,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 955 (1992).

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. (London) 458, 191–221 (1992).

1990 (3)

1989 (1)

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. (London) 414, 223–243 (1989).

1987 (2)

1986 (2)

1985 (6)

R. F. Hess, G. T. Plant, “Temporal frequency discrimination in human vision: evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493–1500 (1985).
[CrossRef]

K. H. Foster, J. P. Gaska, M. Nagler, D. A. Pollen, “Spatial- and temporal-frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey,” J. Physiol. (London) 365, 331–363 (1985).

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[CrossRef] [PubMed]

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).

E. H. Adelson, J. R. Bergen, “Spatio-temporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

1984 (4)

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
[CrossRef] [PubMed]

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

P. Thompson, “The coding of velocity of movement in the human visual system,” Vision Res. 24, 41–45 (1984).
[CrossRef] [PubMed]

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984).

1982 (2)

B. A. Wandell, “Measurement of small color differences,” Psychol. Rev. 89, 281–302 (1982).
[CrossRef] [PubMed]

P. G. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

1981 (4)

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef]

D. J. Tolhurst, J. A. Movshon, I. D. Thompson, “The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast,” Exp. Brain Res. 41, 405–418 (1981).

G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
[CrossRef] [PubMed]

J. Gottesman, G. S. Rubin, G. E. Legge, “A power law for perceived contrast in human vision,” Vision Res. 21, 791–799 (1981).
[CrossRef] [PubMed]

1980 (1)

M. G. Harris, “Velocity specificity of the flicker to pattern sensitivity ratio in human vision,” Vision Res. 20, 687–691 (1980).
[CrossRef] [PubMed]

1979 (1)

J. J. Vos, “Line elements and physiological models of color vision,” Color Res. Appl. 4, 208–216 (1979).
[CrossRef]

1977 (1)

A. B. Watson, J. Nachmias, “Patterns of temporal interaction in the detection of gratings,” Vision Res. 17, 893–902 (1977).
[CrossRef] [PubMed]

1975 (1)

D. J. Tolhurst, “Reaction times in the detection of gratings by human observers: a probabilistic mechanism,” Vision Res. 15, 1143–1149 (1975).
[CrossRef] [PubMed]

1971 (2)

D. H. Kelly, “Theory of flicker and transient responses. II. Counterphase gratings,” J. Opt. Soc. Am. A 61, 632–640 (1971).
[CrossRef]

D. Regan, C. W. Tyler, “Some dynamic features of color vision,” Vision Res. 11, 1307–1324 (1971).
[CrossRef] [PubMed]

1948 (1)

H. L. DeVries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).

Adelson, E. H.

Anderson, S. J.

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[CrossRef] [PubMed]

Anstis, S. M.

Ayama, M.

Badcock, D. R.

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).
[CrossRef]

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

Bergen, J. R.

Boulton, J. C.

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the preception of motion,” Ophthalmic Physiol. Opt. 12, 201–205 (1992).
[CrossRef] [PubMed]

Burr, D. C.

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[CrossRef] [PubMed]

Cavanagh, P.

Chapparo, A.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

Clifford, C. W. G.

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
[CrossRef] [PubMed]

Croner, L. J.

L. J. Croner, K. Purpura, E. Kaplan, “Response variability in retinal ganglion cells of primates,” Proc. Natl. Acad. Sci. USA 90, 8128–8130 (1993).
[CrossRef] [PubMed]

Davis, M.

Derrington, A. M.

G. B. Henning, A. M. Derrington, “Speed, spatial-frequency, and temporal-frequency comparisons in luminance and colour gratings,” Vision Res. 34, 2093–2101 (1994).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984).

DeVries, H. L.

H. L. DeVries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).

Edgar, G. K.

A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
[CrossRef] [PubMed]

Eskew, R. T.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

Favreau, O. E.

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

Foster, K. H.

K. H. Foster, J. P. Gaska, M. Nagler, D. A. Pollen, “Spatial- and temporal-frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey,” J. Physiol. (London) 365, 331–363 (1985).

Gaska, J. P.

K. H. Foster, J. P. Gaska, M. Nagler, D. A. Pollen, “Spatial- and temporal-frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey,” J. Physiol. (London) 365, 331–363 (1985).

Gegenfurtner, K.

K. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic, and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

M. J. Hawken, K. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Gottesman, J.

J. Gottesman, G. S. Rubin, G. E. Legge, “A power law for perceived contrast in human vision,” Vision Res. 21, 791–799 (1981).
[CrossRef] [PubMed]

Graham, N. V. S.

N. V. S. Graham, Visual Pattern Analysers, Oxford Psychology Series 16 (Oxford U. Press, New York, 1989).

Grosof, D. H.

M. J. Hawken, R. M. Shapley, D. H. Grosof, “Temporal frequency tuning of neurones in macaque V1: effects of luminance contrast and chromaticity,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 955 (1992).

Hammett, S. T.

S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
[CrossRef] [PubMed]

Harris, M. G.

M. G. Harris, “Velocity specificity of the flicker to pattern sensitivity ratio in human vision,” Vision Res. 20, 687–691 (1980).
[CrossRef] [PubMed]

Hawken, M. J.

K. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic, and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

M. J. Hawken, K. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

M. J. Hawken, R. M. Shapley, D. H. Grosof, “Temporal frequency tuning of neurones in macaque V1: effects of luminance contrast and chromaticity,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 955 (1992).

Henning, G. B.

G. B. Henning, A. M. Derrington, “Speed, spatial-frequency, and temporal-frequency comparisons in luminance and colour gratings,” Vision Res. 34, 2093–2101 (1994).
[CrossRef] [PubMed]

Hess, R. F.

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

R. F. Hess, G. T. Plant, “Temporal frequency discrimination in human vision: evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493–1500 (1985).
[CrossRef]

Jin, Q.

Johnston, A.

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
[CrossRef] [PubMed]

Kaiser, P.

Kaplan, E.

L. J. Croner, K. Purpura, E. Kaplan, “Response variability in retinal ganglion cells of primates,” Proc. Natl. Acad. Sci. USA 90, 8128–8130 (1993).
[CrossRef] [PubMed]

Kelly, D. H.

D. H. Kelly, “Theory of flicker and transient responses. II. Counterphase gratings,” J. Opt. Soc. Am. A 61, 632–640 (1971).
[CrossRef]

Kremers, J.

B. B. Lee, T. Yeh, J. Kremers, V. C. Smith, J. Pokorny, “The central filter acting upon parvocellular pathway signals,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 912 (1993).

Kronauer, R. E.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

Kulikowski, J. J.

Laming, D.

D. Laming, “Theoretical basis of the processing of simple visual stimuli,” in Vision and Visual Dysfunction, Limits of Vision, J. J. Kulikowski, V. Walsh, I. J. Murray, eds. (CRC Press, Boca Raton, Fla., 1991), Vol. 5, pp. 23–34.

Lee, B. B.

B. B. Lee, T. Yeh, J. Kremers, V. C. Smith, J. Pokorny, “The central filter acting upon parvocellular pathway signals,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 912 (1993).

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. (London) 458, 191–221 (1992).

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. (London) 414, 223–243 (1989).

Legge, G. E.

J. Gottesman, G. S. Rubin, G. E. Legge, “A power law for perceived contrast in human vision,” Vision Res. 21, 791–799 (1981).
[CrossRef] [PubMed]

G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
[CrossRef] [PubMed]

Lennie, P.

G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[CrossRef] [PubMed]

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984).

Losada, M. A.

M. A. Losada, K. T. Mullen, “Color and luminance spatial tuning estimated by noise masking in the absence of off-frequency looking,” J. Opt. Soc. Am. A 12, 250–260 (1995).
[CrossRef]

M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vision Res. 34, 331–341 (1994).
[CrossRef] [PubMed]

MacLeod, D. I. A.

Makous, W.

J. Yang, W. Makous, “Spatiotemporal separability in contrast sensitivity,” Vision Res. 34, 2569–2576 (1994).
[CrossRef] [PubMed]

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

Mandler, M. B.

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

Martin, P. R.

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. (London) 458, 191–221 (1992).

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. (London) 414, 223–243 (1989).

Maunsell, J. H. R.

G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[CrossRef] [PubMed]

Metha, A. B.

A. B. Metha, K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1969–1980 (1996).
[CrossRef]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).
[CrossRef]

A. B. Metha, “Detection and direction discrimination in terms of post-receptoral mechanisms,” Ph.D. dissertation (The University of Melbourne, Melbourne, Australia, 1994).

Movshon, J. A.

D. J. Tolhurst, J. A. Movshon, I. D. Thompson, “The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast,” Exp. Brain Res. 41, 405–418 (1981).

Mullen, K. T.

A. B. Metha, K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1969–1980 (1996).
[CrossRef]

M. A. Losada, K. T. Mullen, “Color and luminance spatial tuning estimated by noise masking in the absence of off-frequency looking,” J. Opt. Soc. Am. A 12, 250–260 (1995).
[CrossRef]

M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vision Res. 34, 331–341 (1994).
[CrossRef] [PubMed]

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the preception of motion,” Ophthalmic Physiol. Opt. 12, 201–205 (1992).
[CrossRef] [PubMed]

K. T. Mullen, J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733–742 (1990).
[CrossRef] [PubMed]

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).

Nachmias, J.

A. B. Watson, J. Nachmias, “Patterns of temporal interaction in the detection of gratings,” Vision Res. 17, 893–902 (1977).
[CrossRef] [PubMed]

Nagler, M.

K. H. Foster, J. P. Gaska, M. Nagler, D. A. Pollen, “Spatial- and temporal-frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey,” J. Physiol. (London) 365, 331–363 (1985).

Plant, G. T.

R. F. Hess, G. T. Plant, “Temporal frequency discrimination in human vision: evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493–1500 (1985).
[CrossRef]

Pokorny, J.

Pollen, D. A.

K. H. Foster, J. P. Gaska, M. Nagler, D. A. Pollen, “Spatial- and temporal-frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey,” J. Physiol. (London) 365, 331–363 (1985).

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

Purpura, K.

L. J. Croner, K. Purpura, E. Kaplan, “Response variability in retinal ganglion cells of primates,” Proc. Natl. Acad. Sci. USA 90, 8128–8130 (1993).
[CrossRef] [PubMed]

Regan, D.

D. Regan, C. W. Tyler, “Some dynamic features of color vision,” Vision Res. 11, 1307–1324 (1971).
[CrossRef] [PubMed]

Robson, J. G.

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef]

Rubin, G. S.

J. Gottesman, G. S. Rubin, G. E. Legge, “A power law for perceived contrast in human vision,” Vision Res. 21, 791–799 (1981).
[CrossRef] [PubMed]

Ryu, A.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

Sclar, G.

G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[CrossRef] [PubMed]

Shapley, R. M.

M. J. Hawken, R. M. Shapley, D. H. Grosof, “Temporal frequency tuning of neurones in macaque V1: effects of luminance contrast and chromaticity,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 955 (1992).

Smith, A. T.

A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
[CrossRef] [PubMed]

S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
[CrossRef] [PubMed]

Smith, V. C.

Snowden, R. J.

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

Stone, L.

L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

Stone, L. S.

P. G. Thompson, L. S. Stone, S. Swash, “Speed estimates from grating patches are not contrast-normalized,” Vision Res. 36, 667–674 (1996).
[CrossRef] [PubMed]

P. Thompson, L. S. Stone, “Contrast dependence of speed perception: effects of temporal presentation,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 973 (1992).

Stromeyer, C. F.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

Swanson, W. H.

Swash, S.

P. G. Thompson, L. S. Stone, S. Swash, “Speed estimates from grating patches are not contrast-normalized,” Vision Res. 36, 667–674 (1996).
[CrossRef] [PubMed]

Tang, C.

M. J. Hawken, K. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

Thompson, I. D.

D. J. Tolhurst, J. A. Movshon, I. D. Thompson, “The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast,” Exp. Brain Res. 41, 405–418 (1981).

Thompson, P.

P. Thompson, L. S. Stone, “Contrast dependence of speed perception: effects of temporal presentation,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 973 (1992).

L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

P. Thompson, “The coding of velocity of movement in the human visual system,” Vision Res. 24, 41–45 (1984).
[CrossRef] [PubMed]

Thompson, P. G.

P. G. Thompson, L. S. Stone, S. Swash, “Speed estimates from grating patches are not contrast-normalized,” Vision Res. 36, 667–674 (1996).
[CrossRef] [PubMed]

P. G. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

Tolhurst, D. J.

D. J. Tolhurst, J. A. Movshon, I. D. Thompson, “The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast,” Exp. Brain Res. 41, 405–418 (1981).

D. J. Tolhurst, “Reaction times in the detection of gratings by human observers: a probabilistic mechanism,” Vision Res. 15, 1143–1149 (1975).
[CrossRef] [PubMed]

Tyler, C. W.

Ueno, T.

Valberg, A.

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. (London) 458, 191–221 (1992).

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. (London) 414, 223–243 (1989).

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

Vimal, R. L. P.

Vingrys, A. J.

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).
[CrossRef]

Vos, J. J.

J. J. Vos, “Line elements and physiological models of color vision,” Color Res. Appl. 4, 208–216 (1979).
[CrossRef]

Wandell, B. A.

B. A. Wandell, “Measurement of small color differences,” Psychol. Rev. 89, 281–302 (1982).
[CrossRef] [PubMed]

Watson, A. B.

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef]

A. B. Watson, J. Nachmias, “Patterns of temporal interaction in the detection of gratings,” Vision Res. 17, 893–902 (1977).
[CrossRef] [PubMed]

Wilson, H. R.

H. R. Wilson, “Responses of spatial mechanisms can explain hyperacuity,” Vision Res. 26, 453–469 (1986).
[CrossRef] [PubMed]

Yang, J.

J. Yang, W. Makous, “Spatiotemporal separability in contrast sensitivity,” Vision Res. 34, 2569–2576 (1994).
[CrossRef] [PubMed]

Yeh, T.

V. C. Smith, J. Pokorny, M. Davis, T. Yeh, “Mechanisms subserving temporal modulation sensitivity in silent-cone substitution,” J. Opt. Soc. Am. A 12, 241–249 (1995).
[CrossRef]

B. B. Lee, T. Yeh, J. Kremers, V. C. Smith, J. Pokorny, “The central filter acting upon parvocellular pathway signals,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 912 (1993).

Behav. Res. Methods Instrum. Comput. (1)

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Calibration of a color monitor for visual psychophysics,” Behav. Res. Methods Instrum. Comput. 25, 371–383 (1993).
[CrossRef]

Color Res. Appl. (1)

J. J. Vos, “Line elements and physiological models of color vision,” Color Res. Appl. 4, 208–216 (1979).
[CrossRef]

Exp. Brain Res. (1)

D. J. Tolhurst, J. A. Movshon, I. D. Thompson, “The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast,” Exp. Brain Res. 41, 405–418 (1981).

Genetica (The Hague) (1)

H. L. DeVries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).

Invest. Ophthalmol. Visual Sci. Suppl. (3)

M. J. Hawken, R. M. Shapley, D. H. Grosof, “Temporal frequency tuning of neurones in macaque V1: effects of luminance contrast and chromaticity,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 955 (1992).

B. B. Lee, T. Yeh, J. Kremers, V. C. Smith, J. Pokorny, “The central filter acting upon parvocellular pathway signals,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 912 (1993).

P. Thompson, L. S. Stone, “Contrast dependence of speed perception: effects of temporal presentation,” Invest. Ophthalmol. Visual Sci. Suppl. 33, 973 (1992).

J. Opt. Soc. Am. A (13)

D. H. Kelly, “Theory of flicker and transient responses. II. Counterphase gratings,” J. Opt. Soc. Am. A 61, 632–640 (1971).
[CrossRef]

J. Pokorny, Q. Jin, V. C. Smith, “Spectral-luminosity functions, scalar linearity, and chromatic adaptation,” J. Opt. Soc. Am. A 10, 1304–1313 (1993).
[CrossRef] [PubMed]

P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[CrossRef] [PubMed]

W. H. Swanson, T. Ueno, V. C. Smith, J. Pokorny, “Temporal modulation sensitivity and pulse detection thresholds for chromatic and luminance perturbations,” J. Opt. Soc. Am. A 4, 1992–2005 (1987).
[CrossRef] [PubMed]

P. Kaiser, M. Ayama, R. L. P. Vimal, “Flicker photometry: residual minimum flicker,” J. Opt. Soc. Am. A 3, 1989–1993 (1986).
[CrossRef] [PubMed]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, M. Davis, T. Yeh, “Mechanisms subserving temporal modulation sensitivity in silent-cone substitution,” J. Opt. Soc. Am. A 12, 241–249 (1995).
[CrossRef]

K. T. Mullen, J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733–742 (1990).
[CrossRef] [PubMed]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance and eccentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

A. B. Metha, K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1969–1980 (1996).
[CrossRef]

E. H. Adelson, J. R. Bergen, “Spatio-temporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
[CrossRef] [PubMed]

M. A. Losada, K. T. Mullen, “Color and luminance spatial tuning estimated by noise masking in the absence of off-frequency looking,” J. Opt. Soc. Am. A 12, 250–260 (1995).
[CrossRef]

P. Cavanagh, C. W. Tyler, O. E. Favreau, “Perceived velocity of moving chromatic gratings,” J. Opt. Soc. Am. A 1, 893–899 (1984).
[CrossRef] [PubMed]

J. Physiol. (London) (6)

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chapparo, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221–243 (1995).

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984).

K. H. Foster, J. P. Gaska, M. Nagler, D. A. Pollen, “Spatial- and temporal-frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey,” J. Physiol. (London) 365, 331–363 (1985).

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. (London) 414, 223–243 (1989).

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. (London) 458, 191–221 (1992).

Nature (London) (1)

M. J. Hawken, K. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Ophthalmic Physiol. Opt. (1)

K. T. Mullen, J. C. Boulton, “Interactions between colour and luminance contrast in the preception of motion,” Ophthalmic Physiol. Opt. 12, 201–205 (1992).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

L. J. Croner, K. Purpura, E. Kaplan, “Response variability in retinal ganglion cells of primates,” Proc. Natl. Acad. Sci. USA 90, 8128–8130 (1993).
[CrossRef] [PubMed]

Psychol. Rev. (1)

B. A. Wandell, “Measurement of small color differences,” Psychol. Rev. 89, 281–302 (1982).
[CrossRef] [PubMed]

Vision Res. (26)

H. R. Wilson, “Responses of spatial mechanisms can explain hyperacuity,” Vision Res. 26, 453–469 (1986).
[CrossRef] [PubMed]

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef]

R. F. Hess, G. T. Plant, “Temporal frequency discrimination in human vision: evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493–1500 (1985).
[CrossRef]

D. Regan, C. W. Tyler, “Some dynamic features of color vision,” Vision Res. 11, 1307–1324 (1971).
[CrossRef] [PubMed]

K. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic, and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

P. G. Thompson, L. S. Stone, S. Swash, “Speed estimates from grating patches are not contrast-normalized,” Vision Res. 36, 667–674 (1996).
[CrossRef] [PubMed]

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[CrossRef] [PubMed]

P. G. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

L. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

J. Yang, W. Makous, “Spatiotemporal separability in contrast sensitivity,” Vision Res. 34, 2569–2576 (1994).
[CrossRef] [PubMed]

A. T. Smith, G. K. Edgar, “Antagonistic comparison of temporal frequency filter outputs as a basis for speed perception,” Vision Res. 34, 253–265 (1994).
[CrossRef] [PubMed]

M. B. Mandler, W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881–1887 (1984).
[CrossRef] [PubMed]

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

S. T. Hammett, A. T. Smith, “Two temporal channels or three? A re-evaluation,” Vision Res. 32, 285–291 (1992).
[CrossRef] [PubMed]

P. Thompson, “The coding of velocity of movement in the human visual system,” Vision Res. 24, 41–45 (1984).
[CrossRef] [PubMed]

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[CrossRef] [PubMed]

M. G. Harris, “Velocity specificity of the flicker to pattern sensitivity ratio in human vision,” Vision Res. 20, 687–691 (1980).
[CrossRef] [PubMed]

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
[CrossRef] [PubMed]

G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
[CrossRef] [PubMed]

J. Gottesman, G. S. Rubin, G. E. Legge, “A power law for perceived contrast in human vision,” Vision Res. 21, 791–799 (1981).
[CrossRef] [PubMed]

G. B. Henning, A. M. Derrington, “Speed, spatial-frequency, and temporal-frequency comparisons in luminance and colour gratings,” Vision Res. 34, 2093–2101 (1994).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “The low level motion system has both chromatic and luminance inputs,” Vision Res. 25, 1879–1884 (1985).
[CrossRef] [PubMed]

D. J. Tolhurst, “Reaction times in the detection of gratings by human observers: a probabilistic mechanism,” Vision Res. 15, 1143–1149 (1975).
[CrossRef] [PubMed]

A. B. Watson, J. Nachmias, “Patterns of temporal interaction in the detection of gratings,” Vision Res. 17, 893–902 (1977).
[CrossRef] [PubMed]

M. A. Losada, K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vision Res. 34, 331–341 (1994).
[CrossRef] [PubMed]

Other (4)

D. Laming, “Theoretical basis of the processing of simple visual stimuli,” in Vision and Visual Dysfunction, Limits of Vision, J. J. Kulikowski, V. Walsh, I. J. Murray, eds. (CRC Press, Boca Raton, Fla., 1991), Vol. 5, pp. 23–34.

N. V. S. Graham, Visual Pattern Analysers, Oxford Psychology Series 16 (Oxford U. Press, New York, 1989).

A. B. Metha, “Detection and direction discrimination in terms of post-receptoral mechanisms,” Ph.D. dissertation (The University of Melbourne, Melbourne, Australia, 1994).

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

RG cardinal cone contrast ratios as a function of temporal frequency (TF) for KTM (open circles) and ABM (filled squares). Each point represents the mean of ten minimum-motion settings in the L–M plane of cone contrast space; the error bars indicate one standard deviation. The curves are the best-fitting power functions to the data, which were used as templates in experiment 2 [for ABM, L:M = 1.8844 × TF0.1776 (r2=0.957); for KTM, L:M = 4.9125 × TF-1.2385 (r2=0.788)].

Fig. 2
Fig. 2

Temporal cone contrast sensitivity functions for both observers measured with the use of achromatic (left) and RG isoluminant (right) stimuli. The filled squares represent the mean and the standard deviation of the five detection thresholds determined for each TF during the 2×2-interval forced-choice comparison sessions in experiment 1. The thick gray curves represent the model predictions for detection performance after parameters were adjusted to give the best fit for both detection and identification data. The thin curves are the modulation transfer functions of the inferred filters underlying the luminance and RG mechanisms. Figure 1 shows that the luminance mechanism receives varying L- and M-cone contrast input as a function of TF; therefore luminance sensitivity is given here as the reciprocal (in cone contrast units) of the threshold achromatic cardinal stimulus projection onto the measured luminance mechanism for each TF. RG sensitivity is given as the reciprocal of the threshold isoluminant stimulus projection onto the RG mechanism, which we assume receives fixed (equal and opposite) L- and M-cone contrast input at all TF's.

Fig. 3
Fig. 3

Identification/detection threshold ratios for each observer with the use of achromatic [(a) and (b)] and isoluminant RG [(c) and (d)] TF pairs. For conditions comparing the flicker frequency, marked by arrows in each plot, the symbols represent the factor by which contrast must be raised above detection threshold to yield 75% correct identification for each compared TF given on the frequency axis. The error bars are standard deviation estimates derived from the detection and identification psychometric function fits. The gray curves represent the model's predictions after parameters were adjusted to give the best fit to both the detection and identification data simultaneously.

Fig. 4
Fig. 4

Normalized impulse response functions corresponding to the two model filters for each observer in the cardinal RG (top) and achromatic (bottom) conditions. The 1.5-c/deg results from experiment 1 are shown by the thick gray curves. For observer KTM the best-fitting model parameters (τ, σ, AA, AB, Δ, β) were as follows: for RG conditions, (0.076, 0.972, 8.93, 9.18, 0.1902, 4.14); and for achromatic conditions, (0.108, 0.557, 5.29, 10.10, 0.0550, 4.35). For observer ABM these parameters were as follows: for RG conditions, (0.077, 0.648, 3.84, 4.06, 0.1116, 3.24); and for achromatic conditions, (0.111, 0.822, 2.71, 6.22, 0.0579, 3.79). The RG filters are based on h0 and h1, a log-time Gaussian and its first derivative. The achromatic filters, h1 and h2, are based on the first and second derivatives of a log-time Gaussian. For comparison, the thin black curves show the inferred impulse response functions taken from a previous paper (Ref. 1) using the same procedure with 0.25-c/deg stimuli.

Fig. 5
Fig. 5

RG (top) and achromatic (bottom) TF discrimination performance as a function of contrast above detection threshold for each observer from base temporal frequencies of 2 Hz (left) and 5.66 Hz (right). In each trial two stimuli were displayed at equal multiples of detection threshold contrast (±0.05-log10 unit random contrast jitter), differing only in flicker frequency. For RG stimuli the isoluminance ratio was also adjusted for each TF, in accordance with the results shown in Fig. 1. ΔTF represents the smallest frequency difference from the base TF noticeable by the observer in each case.

Fig. 6
Fig. 6

(a) Representation of the internal response space for observer ABM generated by plotting the transduced output of the model's fast filter (A) against the slow filter (B). The curves radiating from the origin represent the filter output combinations for different flicker rates as indicated over all contrast levels. For clarity, the filled symbols show only the positions in this space of the 2-Hz RG stimuli at the seven contrast levels used in experiment 2. The open symbols indicate the positions in this space of the just-discriminable frequencies (2+ΔTF Hz) at each corresponding contrast level above detection threshold. The n and s parameters of the Michaelis–Menton transducer function (b) are adjusted so that the distance in this space between the two discriminable frequencies (Δ) is approximately constant at each contrast level for both RG and achromatic stimuli simultaneously. The filled and open arrows indicate the contrast range used in experiment 2 for the achromatic and RG conditions, respectively. Refer to the text for further details.

Fig. 7
Fig. 7

(a) Predicted speed as a function of contrast given by the ratio model. The filled symbols represent the predicted achromatic speeds, and the open symbols represent predicted RG speeds for observers KTM (squares) and ABM (circles). The lines are best-fitting linear regressions through the predictions. (b) Slopes of the best-fitting linear regressions in (a), equivalent to the speed gain in each condition (2- and 5.66-Hz base speeds), for observers KTM (open bars) and ABM (filled bars).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Output(input)=inputnsn+inputn,

Metrics