Abstract

We compared retinal point-spread functions obtained by the double-pass method with two different wavelengths, green (543 nm) and near-infrared (780 nm), in both cases under the best conditions of focus. The best refractive state at each wavelength was determined with two procedures: subjective refraction and analysis of the recorded double-pass images as a function of focus. Since the refraction results agree quite well, we assume that in both cases, green and near-infrared light, most of the light of the central core in the double-pass images comes from a layer close to that of the photoreceptors. The central spread of the double-pass images was also quite similar for the two wavelengths: a width of 23 arcmin at half-intensity relative to the peak. However, larger differences were found in the tails of the images, with the infrared images presenting a larger scattering halo, probably as a result of a more important contribution of retinal and choroidal scattering for that wavelength. By using the central core in the double-pass images and ignoring the tails, we can use the near-infrared data to predict the modulation transfer function measured with the use of green light. These results raise the possibility of using near-infrared illumination in the double-pass method to estimate the optical performance of the human eye.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. N. Cornsweet, H. D. Crane, “Servo-controlled infrared optometer,” J. Opt. Soc. Am. 60, 548–554 (1970).
    [CrossRef] [PubMed]
  2. F. Schaeffel, L. Farkas, H. C. Howland, “Infrared photoretinoscope,” Appl. Opt. 28, 1505–1509 (1989).
  3. A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996).
    [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  5. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattman, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
    [PubMed]
  6. D. R. Williams, D. Brainard, M. MacHahon, R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11, 3123–3135 (1994).
    [CrossRef]
  7. F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [CrossRef] [PubMed]
  8. J. Santamarı́a, P. Artal, J. Bescos, “Determination of the point-spread function of human eyes using a hybrid optical–digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [CrossRef]
  9. P. Artal, R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–253 (1994).
    [CrossRef]
  10. P. Artal, I. Iglesias, N. López-Gil, D. G. Green, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
    [CrossRef]
  11. W. J. Smith, Modern Optical Engineering. The Design of Optical Systems, 2nd ed. (McGraw-Hill, New York, 1990).
  12. P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
    [CrossRef]
  13. D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
    [CrossRef] [PubMed]
  14. P. Artal, R. Navarro, “Simultaneous measurement of two-point-spread functions at different locations across the human fovea,” Appl. Opt. 31, 3646–3656 (1992).
    [CrossRef] [PubMed]
  15. W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1975).
    [CrossRef]
  16. P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye and its correction,” Vision Res. 26, 361–366 (1986).
    [CrossRef]
  17. I. J. Hodgkinson, P. B. Greer, A. C. B. Molteno, “Point-spread function for light scattered in the human ocular fundus,” J. Opt. Soc. Am. A 11, 479–486 (1994).
    [CrossRef]
  18. D. D. Saunders, H. C. Howland, “Measurement of the infrared line and point spreads in the human eye,” Invest. Ophthalmol. Vis. Sci. (Suppl.) 37, S720 (1996).
  19. P. Artal, N. López-Gil, “Monochromatic retinal image quality as a function of accommodation,” Invest. Ophthalmol. Vis. Sci. (Suppl.) 37, S719 (1996).

1996 (4)

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[CrossRef] [PubMed]

D. D. Saunders, H. C. Howland, “Measurement of the infrared line and point spreads in the human eye,” Invest. Ophthalmol. Vis. Sci. (Suppl.) 37, S720 (1996).

P. Artal, N. López-Gil, “Monochromatic retinal image quality as a function of accommodation,” Invest. Ophthalmol. Vis. Sci. (Suppl.) 37, S719 (1996).

1995 (2)

1994 (3)

1993 (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattman, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1989 (2)

F. Schaeffel, L. Farkas, H. C. Howland, “Infrared photoretinoscope,” Appl. Opt. 28, 1505–1509 (1989).

F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[CrossRef] [PubMed]

1987 (1)

1986 (1)

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef]

1975 (1)

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1975).
[CrossRef]

1970 (1)

Artal, P.

Bescos, J.

Bradley, A.

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef]

Brainard, D.

Brainard, D. H.

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[CrossRef] [PubMed]

Burns, S. A.

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Charman, W. N.

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1975).
[CrossRef]

Cornsweet, T. N.

Crane, H. D.

Delori, F. C.

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[CrossRef] [PubMed]

Drexler, W.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattman, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Elsner, A. E.

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

Farkas, L.

F. Schaeffel, L. Farkas, H. C. Howland, “Infrared photoretinoscope,” Appl. Opt. 28, 1505–1509 (1989).

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattman, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Green, D. G.

Greer, P. B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattman, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Hodgkinson, I. J.

Howarth, P. A.

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef]

Howland, H. C.

D. D. Saunders, H. C. Howland, “Measurement of the infrared line and point spreads in the human eye,” Invest. Ophthalmol. Vis. Sci. (Suppl.) 37, S720 (1996).

F. Schaeffel, L. Farkas, H. C. Howland, “Infrared photoretinoscope,” Appl. Opt. 28, 1505–1509 (1989).

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Iglesias, I.

Jennings, J. A. M.

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1975).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattman, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

López-Gil, N.

MacHahon, M.

Marcos, S.

McMahon, M. J.

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[CrossRef] [PubMed]

Molteno, A. C. B.

Navarro, R.

Pflibsen, K. P.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Santamari´a, J.

Sattman, H.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattman, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Saunders, D. D.

D. D. Saunders, H. C. Howland, “Measurement of the infrared line and point spreads in the human eye,” Invest. Ophthalmol. Vis. Sci. (Suppl.) 37, S720 (1996).

Schaeffel, F.

F. Schaeffel, L. Farkas, H. C. Howland, “Infrared photoretinoscope,” Appl. Opt. 28, 1505–1509 (1989).

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Smith, W. J.

W. J. Smith, Modern Optical Engineering. The Design of Optical Systems, 2nd ed. (McGraw-Hill, New York, 1990).

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Weiter, J. J.

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

Williams, D. R.

Am. J. Ophthalmol. (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattman, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993).
[PubMed]

Appl. Opt. (3)

Invest. Ophthalmol. Vis. Sci. (Suppl.) (2)

D. D. Saunders, H. C. Howland, “Measurement of the infrared line and point spreads in the human eye,” Invest. Ophthalmol. Vis. Sci. (Suppl.) 37, S720 (1996).

P. Artal, N. López-Gil, “Monochromatic retinal image quality as a function of accommodation,” Invest. Ophthalmol. Vis. Sci. (Suppl.) 37, S719 (1996).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (6)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Vision Res. (4)

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, D. H. Brainard, “Off-axis optical quality and retinal sampling in the human eye,” Vision Res. 36, 1103–1114 (1996).
[CrossRef] [PubMed]

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1975).
[CrossRef]

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef]

Other (1)

W. J. Smith, Modern Optical Engineering. The Design of Optical Systems, 2nd ed. (McGraw-Hill, New York, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the dual green–near-infrared double-pass apparatus. L, He–Ne laser (543 nm); LD, diode laser (780 nm); DF, neutral-density filter; P, linear polarizer; MO, microscope objective; PH1 and PH2, pinholes; L1, aspheric lens; RM, removable mirror; L3 and L4 achromatic doublets; P1 and P2, first- and second-pass stops; BS1 and BS2, pellicle beam splitters; TL, trial lens; LT1 and LT2, light trappers; CZ, camera zoom objective.

Fig. 2
Fig. 2

(a) Double-pass aerial images for observer PA in different foci with green light and 4-mm pupil diameter in both passes. (b) Two different image-quality criteria used to select the best image: the Strehl ratio (solid curve) and the normalized maximum divided by the mean irradiance (dashed curve) as a function of focus.

Fig. 3
Fig. 3

(a) Double-pass aerial images for observer PA in different foci with near-infrared light and 4-mm pupil diameter in both passes. (b) Two different image-quality criteria used to select the best image: the Strehl ratio (solid curve) and the normalized maximum divided by the mean irradiance (dashed curve) as a function of focus.

Fig. 4
Fig. 4

(a) Double-pass aerial images for observer CG in different foci when using green light and 4-mm pupil diameter in both passes. (b) Two different image-quality criteria used to select the best image: the Strehl ratio (solid curve) and the normalized maximum divided by the mean irradiance (dotted curve) as a function of focus.

Fig. 5
Fig. 5

(a) Double-pass aerial images for observer CG in different foci with near-infrared light and 4-mm pupil diameter in both passes. (b) Two different image-quality criteria used to select the best image: the Strehl ratio (solid curve) and the normalized maximum divided by the mean irradiance (dashed curve) as a function of focus.

Fig. 6
Fig. 6

Radial profiles of the normalized intensity in the double-pass retinal images obtained with 4-mm pupil diameter for subjects (a) NL and (b) PA with near-infrared (solid curve) and green (dashed curve) light.

Fig. 7
Fig. 7

Radial profiles of the normalized intensity in the double-pass retinal images in a logarithm scale for a large (3 deg) semi-field of view. Solid and dashed curves correspond to near-infrared and green light, respectively, obtained for subjects (a) NL and (b) PA when images obtained with 4-mm pupil diameter were used.

Fig. 8
Fig. 8

Detail of radial profiles of the normalized intensity in the double-pass retinal images of PA. Near-infrared (solid curve), exponential curve adjusted (near-horizontal dashed curve), subtraction of exponential from near-infrared (long-dashed curve), and results recorded with green light (short-dashed curve). (b) Near-infrared MTF’s for PA calculated from the same double-pass image after subtraction of an appropriate constant background (solid curve) and the two-dimensional exponential adjusted in (a).

Fig. 9
Fig. 9

MTF’s calculated from double-pass images for subjects (a) NL and (b) PA with near-infrared (solid curves) and green (dashed curves) light when 4-mm pupil diameter was used.

Fig. 10
Fig. 10

Same MTF results as in Fig. 9 represented versus the normalized spatial frequency (divided by the cutoff spatial frequency for the diffraction-limited case). Solid and dashed curves correspond to near-infrared and green light, respectively.

Fig. 11
Fig. 11

Gray-level and contour plots for near-infrared (top) and green (bottom) retinal images recorded with unequal first- (1.5-mm) and second-pass (6-mm) stops for subject NL. These double-pass images contain information on ocular asymmetric aberrations. Note that the two images have roughly the same shape.

Fig. 12
Fig. 12

Gray-level and contour plots for near-infrared (top) and green (bottom) retinal images recorded with unequal first- (1.5-mm) and second-pass (6-mm) stops for subject PA. These double-pass images contain information on ocular asymmetric aberrations. Note that the two images have roughly the same shape.

Tables (1)

Tables Icon

Table 1 Doubles Pass (Obj.) and Subjective (Subj.) Best-Focus Settings (in Diopters) and Their Difference (Δ)

Metrics