Abstract

Optic disk reflectance was measured from 27 normal observers with their physiological lenses (aged 21–74 yr) and from two pseudophakic observers (aged 69 and 70 yr) with use of a Utrecht fundus reflection densitometer. Psychophysical heterochromatic flicker photometric luminance matches (10° field) were obtained on the same group of the observers. A four-parameter model incorporating lens density, hemoglobin absorption, optic disk reflectance, and superficial stray light was used to fit the reflectometric data. A model incorporating lens density and the Judd revised spectral luminous-efficiency function was used to fit the psychophysical data. The lens-density spectrum used the two-factor aging model of Pokorny et al. [Appl. Opt. 26, 1437 (1987)]. The lens density for each normal observer was estimated through a least-squares fitting procedure yielding an estimated lens age. For the reflectometric data the observer’s chronological age agreed with estimated lens age with a correlation coefficient of 0.92. The reflectometric regression line underestimated chronological age by approximately 5 yr. The mean reflectance of the optic disk was 0.047 with standard error of the mean of 0.0044. Data from the pseudophakic observers were well described when corneal density was used to replace lens density. The lens density was also estimated from the psychophysical data. The observer’s chronological age agreed with psychophysically estimated lens age with a correlation coefficient of 0.92. It was concluded that the in vivo lens density can be estimated from the reflectance spectrum measured off the optic disk. The reflectance spectrum of the optic disk was inferred to be close to spectrally neutral.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Boettner, J. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1, 776–783 (1962).
  2. T. J. van den Berg, K. E. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vision Res. 34, 1453–1456 (1994).
    [CrossRef] [PubMed]
  3. C. Hess, “Messende Untersuchungen uber die Gelbfarbung der mensschlichen Linse und uber ihren Einfluss auf das Sehen,” Arch. f. Augenheilk. 63, 164–180 (1909).
  4. E. Ludvigh, E. F. McCarthy, “Absorption of visible light by the refractive media of the human eye,” Arch. Ophthalmol. 20, 37–51 (1938).
  5. G. Wald, “Human vision and spectrum,” Science 101, 653–658 (1945).
    [CrossRef] [PubMed]
  6. W. D. Wright, “The visual sensitivity of normal and aphakic observers in the ultra-violet,” Année Psychol. 50, 169–177 (1951).
  7. R. A. Weale, “Light absorption by the lens of the human eye,” Opt. Acta 1, 107–110 (1954).
    [CrossRef]
  8. F. S. Said, R. A. Weale, “The variation with age of the spectral transmittivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
  9. S. Coren, J. S. Girgus, “Density of human lens pigmentation: in vivo measurements over an extended age range,” Vision Res. 12, 343–346 (1972).
    [CrossRef] [PubMed]
  10. G. Wyszecki, W. S. Stiles, Color Science—Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).
  11. D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
    [CrossRef]
  12. J. G. Raeder, “Untersuchungen uber die Lage und Dicke der Linse im menschlichen Auge bei physiologischen und pathologischen Zustanden, nach einer neuen methode gemessen. I. Die Lage und Dicke der Linse bei Emmetropen, Hypermetropen und Myopen,” Graefes Arch. Ophthalmol. 110, 73–108 (1922).
  13. J. Mellerio, “Light absorption and scatter in the human eyes,” Vision Res. 11, 129–141 (1971).
    [CrossRef] [PubMed]
  14. J. S. Werner, “Age change in ocular media density and consequences for color vision,” in Colour Vision Deficiencies, V. G. Verriest, ed. (Hilger, Bristol, UK, 1980), pp. 355–359.
  15. G. L. Savage, G. Haegerstrom-Portnoy, A. J. Adams, S. E. Hewlett, “Age changes in the optical density of human ocular media,” Clin. Vision Sci. 8, 97–108 (1993).
  16. S. Zigman, “Ultraviolet light and human lens pigmentation,” Vision Res. 18, 509–510 (1978).
    [CrossRef] [PubMed]
  17. R. van Heyningen, “What happens to the human lens in cataract?” Sci. Am. 233, 70–81 (1975).
    [CrossRef]
  18. S. Zigman, J. Groff, T. Yulo, G. Griess, “Light extinction and protein in lens,” Exp. Eye Res. 23, 555–567 (1976).
    [PubMed]
  19. R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. (London) 395, 577–587 (1988). The values for wavelength, L(λ, 0), and β(λ) read off Fig. 4 were 400, 0.7, 0.014; 409, 0.535, 0.0142; 420, 0.45, 0.013; 450, 0.15, 0.022; 500, 0.09, 0.0206; 550, 0.07, 0.0182; 600, 0.05, 0.0168.
  20. K. E. W. P. Tan, Vision in the Ultraviolet (Drukkerij, Elinkwijk, Utrecht, The Netherlands, 1971).
  21. J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
    [CrossRef] [PubMed]
  22. T. J. T. P. van den Berg, “Quantal and visual efficiency of fluorescence in the lens of the human eye,” Invest. Ophthalmol. Vis. Sci. 34, 3566–3573 (1993).
    [PubMed]
  23. T. J. T. P. van den Berg, J. Felius, “Relationship between spectral transmittance and slit lamp color of human lenses,” Invest. Ophthalmol. Vis. Sci. 36, 322–329 (1995).
    [PubMed]
  24. C. A. Johnson, D. L. Howard, D. Marshall, H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993).
    [CrossRef] [PubMed]
  25. D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
    [CrossRef] [PubMed]
  26. F. C. Delori, S. A. Burns, “Fundus reflectance and the measurement of crystalline lens density,” J. Opt. Soc. Am. A 13, 215–226 (1996).
    [CrossRef]
  27. P. A. Sample, F. D. Esterson, R. N. Weintraub, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
    [PubMed]
  28. W. S. Stiles, J. M. Burch, “Interim report to the Commission Internationale de l’Eclairage, Zurich, 1955, on the National Physical Laboratory’s investigation of colour-matching,” Opt. Acta 2, 168–181 (1955).
    [CrossRef]
  29. J. D. Moreland, “Temporal variations in anomaloscope equations,” Mod. Probl. Ophthalmol. 19, 167–172 (1978).
    [PubMed]
  30. J. D. Moreland, E. Torczynski, R. Tripathi, “Rayleigh and Moreland matches in the aging eye,” Doc. Ophthalmol. Proc. Ser. 54, 347–352 (1991).
  31. D. van Norren, J. van der Kraats, “Retinal densitometer with the size of a fundus camera,” Vision Res. 29, 369–374 (1989).
    [CrossRef] [PubMed]
  32. W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
    [CrossRef] [PubMed]
  33. R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
    [CrossRef] [PubMed]
  34. M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
    [CrossRef] [PubMed]
  35. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  36. R. W. Burnham, “A colorimeter for research in color perception,” Am. J. Psychol. 65, 603–608 (1952).
    [CrossRef] [PubMed]
  37. S. Coren, “An instrument to produce surface colors of continuously variable brightness,” Behav. Metric Instrum. 2, 263 (1970).
  38. F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [CrossRef] [PubMed]
  39. O. W. van Assendelft, Spectroscopy of Hemoglobin Derivatives (C. C. Thomas, Springfield, Ill., 1970).
  40. D. B. Judd, “Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight,” in Proceedings of the 12th Session of the CIE, (Bureau Central de la CIE, Paris, 1951), pp. 1–60.
  41. F. C. Delori, “Reflectometry measurement of optic disc blood volume,” in Ocular Blood Flow in Glaucoma, G. N. Lambrou, E. L. Greve, eds. (Kugler & Ghedini, Amsterdam, 1989), pp. 155–163.

1996 (1)

1995 (1)

T. J. T. P. van den Berg, J. Felius, “Relationship between spectral transmittance and slit lamp color of human lenses,” Invest. Ophthalmol. Vis. Sci. 36, 322–329 (1995).
[PubMed]

1994 (1)

T. J. van den Berg, K. E. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vision Res. 34, 1453–1456 (1994).
[CrossRef] [PubMed]

1993 (3)

G. L. Savage, G. Haegerstrom-Portnoy, A. J. Adams, S. E. Hewlett, “Age changes in the optical density of human ocular media,” Clin. Vision Sci. 8, 97–108 (1993).

C. A. Johnson, D. L. Howard, D. Marshall, H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993).
[CrossRef] [PubMed]

T. J. T. P. van den Berg, “Quantal and visual efficiency of fluorescence in the lens of the human eye,” Invest. Ophthalmol. Vis. Sci. 34, 3566–3573 (1993).
[PubMed]

1991 (2)

J. D. Moreland, E. Torczynski, R. Tripathi, “Rayleigh and Moreland matches in the aging eye,” Doc. Ophthalmol. Proc. Ser. 54, 347–352 (1991).

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

1989 (3)

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[CrossRef] [PubMed]

D. van Norren, J. van der Kraats, “Retinal densitometer with the size of a fundus camera,” Vision Res. 29, 369–374 (1989).
[CrossRef] [PubMed]

1988 (2)

P. A. Sample, F. D. Esterson, R. N. Weintraub, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
[PubMed]

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. (London) 395, 577–587 (1988). The values for wavelength, L(λ, 0), and β(λ) read off Fig. 4 were 400, 0.7, 0.014; 409, 0.535, 0.0142; 420, 0.45, 0.013; 450, 0.15, 0.022; 500, 0.09, 0.0206; 550, 0.07, 0.0182; 600, 0.05, 0.0168.

1987 (1)

1986 (1)

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

1978 (2)

J. D. Moreland, “Temporal variations in anomaloscope equations,” Mod. Probl. Ophthalmol. 19, 167–172 (1978).
[PubMed]

S. Zigman, “Ultraviolet light and human lens pigmentation,” Vision Res. 18, 509–510 (1978).
[CrossRef] [PubMed]

1976 (1)

S. Zigman, J. Groff, T. Yulo, G. Griess, “Light extinction and protein in lens,” Exp. Eye Res. 23, 555–567 (1976).
[PubMed]

1975 (2)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

R. van Heyningen, “What happens to the human lens in cataract?” Sci. Am. 233, 70–81 (1975).
[CrossRef]

1974 (1)

D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef]

1972 (1)

S. Coren, J. S. Girgus, “Density of human lens pigmentation: in vivo measurements over an extended age range,” Vision Res. 12, 343–346 (1972).
[CrossRef] [PubMed]

1971 (1)

J. Mellerio, “Light absorption and scatter in the human eyes,” Vision Res. 11, 129–141 (1971).
[CrossRef] [PubMed]

1970 (1)

S. Coren, “An instrument to produce surface colors of continuously variable brightness,” Behav. Metric Instrum. 2, 263 (1970).

1964 (1)

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

1962 (1)

E. A. Boettner, J. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1, 776–783 (1962).

1959 (1)

F. S. Said, R. A. Weale, “The variation with age of the spectral transmittivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).

1955 (1)

W. S. Stiles, J. M. Burch, “Interim report to the Commission Internationale de l’Eclairage, Zurich, 1955, on the National Physical Laboratory’s investigation of colour-matching,” Opt. Acta 2, 168–181 (1955).
[CrossRef]

1954 (1)

R. A. Weale, “Light absorption by the lens of the human eye,” Opt. Acta 1, 107–110 (1954).
[CrossRef]

1952 (1)

R. W. Burnham, “A colorimeter for research in color perception,” Am. J. Psychol. 65, 603–608 (1952).
[CrossRef] [PubMed]

1951 (1)

W. D. Wright, “The visual sensitivity of normal and aphakic observers in the ultra-violet,” Année Psychol. 50, 169–177 (1951).

1945 (1)

G. Wald, “Human vision and spectrum,” Science 101, 653–658 (1945).
[CrossRef] [PubMed]

1938 (1)

E. Ludvigh, E. F. McCarthy, “Absorption of visible light by the refractive media of the human eye,” Arch. Ophthalmol. 20, 37–51 (1938).

1922 (1)

J. G. Raeder, “Untersuchungen uber die Lage und Dicke der Linse im menschlichen Auge bei physiologischen und pathologischen Zustanden, nach einer neuen methode gemessen. I. Die Lage und Dicke der Linse bei Emmetropen, Hypermetropen und Myopen,” Graefes Arch. Ophthalmol. 110, 73–108 (1922).

1909 (1)

C. Hess, “Messende Untersuchungen uber die Gelbfarbung der mensschlichen Linse und uber ihren Einfluss auf das Sehen,” Arch. f. Augenheilk. 63, 164–180 (1909).

Adams, A. J.

G. L. Savage, G. Haegerstrom-Portnoy, A. J. Adams, S. E. Hewlett, “Age changes in the optical density of human ocular media,” Clin. Vision Sci. 8, 97–108 (1993).

Baker, H. D.

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

Boettner, E. A.

E. A. Boettner, J. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1, 776–783 (1962).

Boynton, R. M.

P. A. Sample, F. D. Esterson, R. N. Weintraub, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
[PubMed]

Burch, J. M.

W. S. Stiles, J. M. Burch, “Interim report to the Commission Internationale de l’Eclairage, Zurich, 1955, on the National Physical Laboratory’s investigation of colour-matching,” Opt. Acta 2, 168–181 (1955).
[CrossRef]

Burnham, R. W.

R. W. Burnham, “A colorimeter for research in color perception,” Am. J. Psychol. 65, 603–608 (1952).
[CrossRef] [PubMed]

Burns, S. A.

Coren, S.

S. Coren, J. S. Girgus, “Density of human lens pigmentation: in vivo measurements over an extended age range,” Vision Res. 12, 343–346 (1972).
[CrossRef] [PubMed]

S. Coren, “An instrument to produce surface colors of continuously variable brightness,” Behav. Metric Instrum. 2, 263 (1970).

Delori, F. C.

F. C. Delori, S. A. Burns, “Fundus reflectance and the measurement of crystalline lens density,” J. Opt. Soc. Am. A 13, 215–226 (1996).
[CrossRef]

F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[CrossRef] [PubMed]

F. C. Delori, “Reflectometry measurement of optic disc blood volume,” in Ocular Blood Flow in Glaucoma, G. N. Lambrou, E. L. Greve, eds. (Kugler & Ghedini, Amsterdam, 1989), pp. 155–163.

Esterson, F. D.

P. A. Sample, F. D. Esterson, R. N. Weintraub, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
[PubMed]

Felius, J.

T. J. T. P. van den Berg, J. Felius, “Relationship between spectral transmittance and slit lamp color of human lenses,” Invest. Ophthalmol. Vis. Sci. 36, 322–329 (1995).
[PubMed]

Girgus, J. S.

S. Coren, J. S. Girgus, “Density of human lens pigmentation: in vivo measurements over an extended age range,” Vision Res. 12, 343–346 (1972).
[CrossRef] [PubMed]

Griess, G.

S. Zigman, J. Groff, T. Yulo, G. Griess, “Light extinction and protein in lens,” Exp. Eye Res. 23, 555–567 (1976).
[PubMed]

Groff, J.

S. Zigman, J. Groff, T. Yulo, G. Griess, “Light extinction and protein in lens,” Exp. Eye Res. 23, 555–567 (1976).
[PubMed]

Haegerstrom-Portnoy, G.

G. L. Savage, G. Haegerstrom-Portnoy, A. J. Adams, S. E. Hewlett, “Age changes in the optical density of human ocular media,” Clin. Vision Sci. 8, 97–108 (1993).

Hess, C.

C. Hess, “Messende Untersuchungen uber die Gelbfarbung der mensschlichen Linse und uber ihren Einfluss auf das Sehen,” Arch. f. Augenheilk. 63, 164–180 (1909).

Hewlett, S. E.

G. L. Savage, G. Haegerstrom-Portnoy, A. J. Adams, S. E. Hewlett, “Age changes in the optical density of human ocular media,” Clin. Vision Sci. 8, 97–108 (1993).

Howard, D. L.

C. A. Johnson, D. L. Howard, D. Marshall, H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993).
[CrossRef] [PubMed]

Johnson, C. A.

C. A. Johnson, D. L. Howard, D. Marshall, H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993).
[CrossRef] [PubMed]

Judd, D. B.

D. B. Judd, “Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight,” in Proceedings of the 12th Session of the CIE, (Bureau Central de la CIE, Paris, 1951), pp. 1–60.

Ludvigh, E.

E. Ludvigh, E. F. McCarthy, “Absorption of visible light by the refractive media of the human eye,” Arch. Ophthalmol. 20, 37–51 (1938).

Lutze, M.

Marshall, D.

C. A. Johnson, D. L. Howard, D. Marshall, H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993).
[CrossRef] [PubMed]

McCarthy, E. F.

E. Ludvigh, E. F. McCarthy, “Absorption of visible light by the refractive media of the human eye,” Arch. Ophthalmol. 20, 37–51 (1938).

Mellerio, J.

J. Mellerio, “Light absorption and scatter in the human eyes,” Vision Res. 11, 129–141 (1971).
[CrossRef] [PubMed]

Moreland, J. D.

J. D. Moreland, E. Torczynski, R. Tripathi, “Rayleigh and Moreland matches in the aging eye,” Doc. Ophthalmol. Proc. Ser. 54, 347–352 (1991).

J. D. Moreland, “Temporal variations in anomaloscope equations,” Mod. Probl. Ophthalmol. 19, 167–172 (1978).
[PubMed]

Pflibsen, K. P.

Pokorny, J.

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Raeder, J. G.

J. G. Raeder, “Untersuchungen uber die Lage und Dicke der Linse im menschlichen Auge bei physiologischen und pathologischen Zustanden, nach einer neuen methode gemessen. I. Die Lage und Dicke der Linse bei Emmetropen, Hypermetropen und Myopen,” Graefes Arch. Ophthalmol. 110, 73–108 (1922).

Rushton, W. A. H.

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

Said, F. S.

F. S. Said, R. A. Weale, “The variation with age of the spectral transmittivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).

Sample, P. A.

P. A. Sample, F. D. Esterson, R. N. Weintraub, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
[PubMed]

Savage, G. L.

G. L. Savage, G. Haegerstrom-Portnoy, A. J. Adams, S. E. Hewlett, “Age changes in the optical density of human ocular media,” Clin. Vision Sci. 8, 97–108 (1993).

Shevell, S. K.

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Shu, H.

C. A. Johnson, D. L. Howard, D. Marshall, H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993).
[CrossRef] [PubMed]

Smith, V. C.

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Stiles, W. S.

W. S. Stiles, J. M. Burch, “Interim report to the Commission Internationale de l’Eclairage, Zurich, 1955, on the National Physical Laboratory’s investigation of colour-matching,” Opt. Acta 2, 168–181 (1955).
[CrossRef]

G. Wyszecki, W. S. Stiles, Color Science—Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Tan, K. E.

T. J. van den Berg, K. E. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vision Res. 34, 1453–1456 (1994).
[CrossRef] [PubMed]

Tan, K. E. W. P.

K. E. W. P. Tan, Vision in the Ultraviolet (Drukkerij, Elinkwijk, Utrecht, The Netherlands, 1971).

Tiemeijer, L. F.

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

Torczynski, E.

J. D. Moreland, E. Torczynski, R. Tripathi, “Rayleigh and Moreland matches in the aging eye,” Doc. Ophthalmol. Proc. Ser. 54, 347–352 (1991).

Tripathi, R.

J. D. Moreland, E. Torczynski, R. Tripathi, “Rayleigh and Moreland matches in the aging eye,” Doc. Ophthalmol. Proc. Ser. 54, 347–352 (1991).

van Assendelft, O. W.

O. W. van Assendelft, Spectroscopy of Hemoglobin Derivatives (C. C. Thomas, Springfield, Ill., 1970).

van den Berg, T. J.

T. J. van den Berg, K. E. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vision Res. 34, 1453–1456 (1994).
[CrossRef] [PubMed]

van den Berg, T. J. T. P.

T. J. T. P. van den Berg, J. Felius, “Relationship between spectral transmittance and slit lamp color of human lenses,” Invest. Ophthalmol. Vis. Sci. 36, 322–329 (1995).
[PubMed]

T. J. T. P. van den Berg, “Quantal and visual efficiency of fluorescence in the lens of the human eye,” Invest. Ophthalmol. Vis. Sci. 34, 3566–3573 (1993).
[PubMed]

van der Kraats, J.

D. van Norren, J. van der Kraats, “Retinal densitometer with the size of a fundus camera,” Vision Res. 29, 369–374 (1989).
[CrossRef] [PubMed]

van Heyningen, R.

R. van Heyningen, “What happens to the human lens in cataract?” Sci. Am. 233, 70–81 (1975).
[CrossRef]

van Norren, D.

D. van Norren, J. van der Kraats, “Retinal densitometer with the size of a fundus camera,” Vision Res. 29, 369–374 (1989).
[CrossRef] [PubMed]

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef]

Vimal, R. L. P.

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Vos, J. J.

D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef]

Wald, G.

G. Wald, “Human vision and spectrum,” Science 101, 653–658 (1945).
[CrossRef] [PubMed]

Weale, R. A.

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. (London) 395, 577–587 (1988). The values for wavelength, L(λ, 0), and β(λ) read off Fig. 4 were 400, 0.7, 0.014; 409, 0.535, 0.0142; 420, 0.45, 0.013; 450, 0.15, 0.022; 500, 0.09, 0.0206; 550, 0.07, 0.0182; 600, 0.05, 0.0168.

F. S. Said, R. A. Weale, “The variation with age of the spectral transmittivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).

R. A. Weale, “Light absorption by the lens of the human eye,” Opt. Acta 1, 107–110 (1954).
[CrossRef]

Weintraub, R. N.

P. A. Sample, F. D. Esterson, R. N. Weintraub, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
[PubMed]

Werner, J. S.

J. S. Werner, “Age change in ocular media density and consequences for color vision,” in Colour Vision Deficiencies, V. G. Verriest, ed. (Hilger, Bristol, UK, 1980), pp. 355–359.

Wesner, M. F.

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

Wolter, J.

E. A. Boettner, J. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1, 776–783 (1962).

Wright, W. D.

W. D. Wright, “The visual sensitivity of normal and aphakic observers in the ultra-violet,” Année Psychol. 50, 169–177 (1951).

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science—Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Yulo, T.

S. Zigman, J. Groff, T. Yulo, G. Griess, “Light extinction and protein in lens,” Exp. Eye Res. 23, 555–567 (1976).
[PubMed]

Zigman, S.

S. Zigman, “Ultraviolet light and human lens pigmentation,” Vision Res. 18, 509–510 (1978).
[CrossRef] [PubMed]

S. Zigman, J. Groff, T. Yulo, G. Griess, “Light extinction and protein in lens,” Exp. Eye Res. 23, 555–567 (1976).
[PubMed]

Am. J. Psychol. (1)

R. W. Burnham, “A colorimeter for research in color perception,” Am. J. Psychol. 65, 603–608 (1952).
[CrossRef] [PubMed]

Année Psychol. (1)

W. D. Wright, “The visual sensitivity of normal and aphakic observers in the ultra-violet,” Année Psychol. 50, 169–177 (1951).

Appl. Opt. (2)

Arch. f. Augenheilk. (1)

C. Hess, “Messende Untersuchungen uber die Gelbfarbung der mensschlichen Linse und uber ihren Einfluss auf das Sehen,” Arch. f. Augenheilk. 63, 164–180 (1909).

Arch. Ophthalmol. (1)

E. Ludvigh, E. F. McCarthy, “Absorption of visible light by the refractive media of the human eye,” Arch. Ophthalmol. 20, 37–51 (1938).

Behav. Metric Instrum. (1)

S. Coren, “An instrument to produce surface colors of continuously variable brightness,” Behav. Metric Instrum. 2, 263 (1970).

Clin. Vision Sci. (1)

G. L. Savage, G. Haegerstrom-Portnoy, A. J. Adams, S. E. Hewlett, “Age changes in the optical density of human ocular media,” Clin. Vision Sci. 8, 97–108 (1993).

Doc. Ophthalmol. Proc. Ser. (1)

J. D. Moreland, E. Torczynski, R. Tripathi, “Rayleigh and Moreland matches in the aging eye,” Doc. Ophthalmol. Proc. Ser. 54, 347–352 (1991).

Exp. Eye Res. (1)

S. Zigman, J. Groff, T. Yulo, G. Griess, “Light extinction and protein in lens,” Exp. Eye Res. 23, 555–567 (1976).
[PubMed]

Gerontologia (1)

F. S. Said, R. A. Weale, “The variation with age of the spectral transmittivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).

Graefes Arch. Ophthalmol. (1)

J. G. Raeder, “Untersuchungen uber die Lage und Dicke der Linse im menschlichen Auge bei physiologischen und pathologischen Zustanden, nach einer neuen methode gemessen. I. Die Lage und Dicke der Linse bei Emmetropen, Hypermetropen und Myopen,” Graefes Arch. Ophthalmol. 110, 73–108 (1922).

Invest. Ophthalmol. Vis. Sci. (4)

E. A. Boettner, J. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. Vis. Sci. 1, 776–783 (1962).

T. J. T. P. van den Berg, “Quantal and visual efficiency of fluorescence in the lens of the human eye,” Invest. Ophthalmol. Vis. Sci. 34, 3566–3573 (1993).
[PubMed]

T. J. T. P. van den Berg, J. Felius, “Relationship between spectral transmittance and slit lamp color of human lenses,” Invest. Ophthalmol. Vis. Sci. 36, 322–329 (1995).
[PubMed]

P. A. Sample, F. D. Esterson, R. N. Weintraub, R. M. Boynton, “The aging lens: in vivo assessment of light absorption in 84 human eyes,” Invest. Ophthalmol. Vis. Sci. 29, 1306–1311 (1988).
[PubMed]

J. Opt. Soc. Am. A (1)

J. Physiol. (London) (1)

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. (London) 395, 577–587 (1988). The values for wavelength, L(λ, 0), and β(λ) read off Fig. 4 were 400, 0.7, 0.014; 409, 0.535, 0.0142; 420, 0.45, 0.013; 450, 0.15, 0.022; 500, 0.09, 0.0206; 550, 0.07, 0.0182; 600, 0.05, 0.0168.

Mod. Probl. Ophthalmol. (1)

J. D. Moreland, “Temporal variations in anomaloscope equations,” Mod. Probl. Ophthalmol. 19, 167–172 (1978).
[PubMed]

Opt. Acta (2)

W. S. Stiles, J. M. Burch, “Interim report to the Commission Internationale de l’Eclairage, Zurich, 1955, on the National Physical Laboratory’s investigation of colour-matching,” Opt. Acta 2, 168–181 (1955).
[CrossRef]

R. A. Weale, “Light absorption by the lens of the human eye,” Opt. Acta 1, 107–110 (1954).
[CrossRef]

Optom. Vis. Sci. (1)

C. A. Johnson, D. L. Howard, D. Marshall, H. Shu, “A noninvasive video-based method for measuring lens transmission properties of the human eye,” Optom. Vis. Sci. 70, 944–955 (1993).
[CrossRef] [PubMed]

Sci. Am. (1)

R. van Heyningen, “What happens to the human lens in cataract?” Sci. Am. 233, 70–81 (1975).
[CrossRef]

Science (1)

G. Wald, “Human vision and spectrum,” Science 101, 653–658 (1945).
[CrossRef] [PubMed]

Vision Res. (11)

T. J. van den Berg, K. E. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vision Res. 34, 1453–1456 (1994).
[CrossRef] [PubMed]

S. Coren, J. S. Girgus, “Density of human lens pigmentation: in vivo measurements over an extended age range,” Vision Res. 12, 343–346 (1972).
[CrossRef] [PubMed]

D. van Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef]

J. Mellerio, “Light absorption and scatter in the human eyes,” Vision Res. 11, 129–141 (1971).
[CrossRef] [PubMed]

S. Zigman, “Ultraviolet light and human lens pigmentation,” Vision Res. 18, 509–510 (1978).
[CrossRef] [PubMed]

D. van Norren, L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313–320 (1986).
[CrossRef] [PubMed]

D. van Norren, J. van der Kraats, “Retinal densitometer with the size of a fundus camera,” Vision Res. 29, 369–374 (1989).
[CrossRef] [PubMed]

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Other (6)

O. W. van Assendelft, Spectroscopy of Hemoglobin Derivatives (C. C. Thomas, Springfield, Ill., 1970).

D. B. Judd, “Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight,” in Proceedings of the 12th Session of the CIE, (Bureau Central de la CIE, Paris, 1951), pp. 1–60.

F. C. Delori, “Reflectometry measurement of optic disc blood volume,” in Ocular Blood Flow in Glaucoma, G. N. Lambrou, E. L. Greve, eds. (Kugler & Ghedini, Amsterdam, 1989), pp. 155–163.

J. S. Werner, “Age change in ocular media density and consequences for color vision,” in Colour Vision Deficiencies, V. G. Verriest, ed. (Hilger, Bristol, UK, 1980), pp. 355–359.

K. E. W. P. Tan, Vision in the Ultraviolet (Drukkerij, Elinkwijk, Utrecht, The Netherlands, 1971).

G. Wyszecki, W. S. Stiles, Color Science—Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Lens spectral density according to the two-factor lens-density model of Pokorny et al. 21

Fig. 2
Fig. 2

Examples of model fits for the data of one observer. The model was Eq. (1) and the two-factor lens-density model. The four panels show the effects of varying one parameter around the best-fit value while the other three parameters are kept fixed. The best fit (solid curves) had the following parameter values: p1=1.25, p2=0.017, p3=0.047, p4=0.002. Broken curves from bottom to top in each panel: A, p1=0.75, 1, 1.25 (fit value), 1.5, 1.75; B, p2=0.003, 0.01, 0.017 (fit value), 0.024, 0.031; C, p3=0.067, 0.057, 0.047 (fit value), 0.037, 0.027; D, p4=0.006, 0.004, 0.002 (fit value), 0.001.

Fig. 3
Fig. 3

Data and model fits for the 26 observers. Optic disk reflectance data are expressed as density units. Each panel shows data for one observer (solid circles). The solid curves are the fits from Eq. (1) with use of the two-factor lens-density function (model 1). Both the data and the fits have been displaced vertically for clarity. Numbers to the right of each curve give the chronological age of the observer (left) and the estimated lens age (right).

Fig. 4
Fig. 4

Scatter plot of the lens age estimated from reflectance data versus the observer’s chronological age. Solid lines show the linear regression. A, two-factor lens model; B, linear lens model; C, exponential lens model.

Fig. 5
Fig. 5

SRS of the three models versus chronological age. Fit with the two-factor lens model (solid circles, solid line), r =0.18; fit with the exponential lens model (open squares, dotted line), r=0.68; fit with the linear lens model (open circles, dashed line), r=0.30. The arrow indicates an SRS of 0.133 for the linear lens model, which is out of the display range.

Fig. 6
Fig. 6

Lens age estimated from the psychophysical match as a function of the observer’s chronological age. The solid line shows the linear regression.

Fig. 7
Fig. 7

Comparison of lens age estimated from psychophysical and from reflectance data.

Fig. 8
Fig. 8

Data (solid circles) from two pseudophakic patients and fits (solid curves) obtained with a model incorporating the corneal spectral density and the spectral density of the IOL [Eq. (1a)].

Tables (2)

Tables Icon

Table 1 Number of Observers Classified by Age and Gender

Tables Icon

Table 2 Correlation Coefficients among the Parameters in the Two-Factor Lens Model

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

D(λ)=-log{p4+(1-p4)p3/10[2p1L(λ, A)+p2H(λ)]},
H(λ)=0.05Hb(λ)+0.95HbO2(λ),
L(λ, A)=(k)[TL1(λ)]+TL2(λ),
for20<A<60k=1.00+0.02(A-32),
forA>60k=1.56+0.0667(A-60).
L(λ, A)=L(λ, 0)exp[β(λ)A],
L(λ, A)=[(A-25.4)0.013+1]10[5.543-(0.013439λ)],
Pe(495)VJ(495)=Pe(430)VJ(430)
log[Si(λ)]=log VJ(λ)+ki[TL1(λ)]-TL1(λ).
log[Si(495)/Si(430)]=log[VJ(495)/VJ(430)]+ki[TL1(495)-TL1(430)]-[TL1(495)-TL1(430)].
ki={log[Si(495)/Si(430)]-log[VJ(495)/VJ(430)]+TL1(495)-TL1(430)}/[TL1(495)-TL1(430)].
D(λ, A)=-log(p4+(1-p4)p3/10{2[C(λ)+IOL(λ)]+p2H(λ)})

Metrics