Abstract

A nonlinear optical processor that is capable of real-time conversion of a femtosecond pulse sequence into its spatial image is introduced, analyzed, and experimentally characterized. The method employs nonlinear spectral domain three-wave mixing in a crystal of LiB3O5, where spectral decomposition waves of a shaped femtosecond pulse are mixed with those of a transform-limited pulse to generate a quasi-monochromatic second-harmonic field. By means of this nonlinear process, the temporal-frequency content of the shaped pulse is directly encoded onto the spatial-frequency content of the second-harmonic field, producing a spatial image of the temporal shaped pulse. We show that, unlike the commonly used autocorrelator, such time-to-space conversion carries both amplitude and phase information on the shape of the femtosecond pulses.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
    [CrossRef] [PubMed]
  2. M. T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993).
    [CrossRef] [PubMed]
  3. P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, “Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero groupdelay dispersion,” Opt. Lett. 18, 54–56 (1993).
    [CrossRef] [PubMed]
  4. C. P. J. Barty, T. Guo, C. LeBlanc, F. Raksi, C. Rose-Petruck, J. A. Squier, K. R. Wilson, V. V. Yakovlev, K. Yamakawa, “Generation of 18-fs, multiterawatt pulses using regenerative pulse,” Opt. Lett. 21, 668–670 (1996).
    [CrossRef] [PubMed]
  5. J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
    [CrossRef]
  6. E. A. De Souza, M. C. Nuss, W. H. Knox, D. A. B. Miller, “Wavelength division multiplexing with femtosecond pulses,” Opt. Lett. 20, 1166–1168 (1995).
    [CrossRef] [PubMed]
  7. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
    [CrossRef] [PubMed]
  8. M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Femtosecond transillumination tomography in thick tissue,” Opt. Lett. 18, 1107–1109 (1993).
    [CrossRef]
  9. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
    [CrossRef]
  10. P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
    [CrossRef]
  11. M. Muller, J. Squier, G. J. Brakenhoff, “Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption,” Opt. Lett. 20, 1038–1040 (1995).
    [CrossRef] [PubMed]
  12. S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412–413 (1992).
    [CrossRef] [PubMed]
  13. W. S. Warren, H. Rabitz, M. Dahlen, “Coherent control of quantum dynamics: the dream is alive,” Science 269, 1581–1589 (1993).
    [CrossRef]
  14. J. Che, J. L. Krause, M. Messina, K. R. Wilson, Y. J. Yan, “Detection and control of molecular quantum dynamics” J. Phys. Chem. 99, 14949–14958 (1995).
    [CrossRef]
  15. C. Froehly, B. Colombeau, M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.
  16. A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
    [CrossRef] [PubMed]
  17. K. Ema, “Real-time ultrashort pulse shaping and pulse-shape measurement using a dynamic grating,” Jpn. J. Appl. Phys. Lett. 30, 2046–2049 (1991).
    [CrossRef]
  18. K. B. Hill, D. J. Brady, “Pulse shaping in volume reflection holograms,” Opt. Lett. 18, 1739–1741 (1993).
    [CrossRef] [PubMed]
  19. M. M. Wefers, K. A. Nelson, “Generation of high-fidelity programmable ultrafast optical waveforms,” Opt. Lett. 20, 1047–1049 (1995).
    [CrossRef] [PubMed]
  20. Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–113 (1990).
    [CrossRef]
  21. A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2253 (1992).
    [CrossRef]
  22. M. C. Nuss, R. L. Morrison, “Time-domain images,” Opt. Lett. 20, 740–742 (1995).
    [CrossRef] [PubMed]
  23. P. C. Sun, Y. Mazurenko, W. S. C. Chang, P. K. L. Yu, Y. Fainman, “All optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
    [CrossRef]
  24. K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All-optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1990).
    [CrossRef]
  25. M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Patrovi, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664–666 (1994).
    [CrossRef] [PubMed]
  26. Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, “Ultrafast space–time transformation of signals using spectral nonlinear optics,” Opt. Spectrosc. (USSR) 78, 122–128 (1995).
  27. Y. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Beliaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 118, 594–600 (1995).
    [CrossRef]
  28. Y. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Beliaev, V. E. Yashin, S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
    [CrossRef] [PubMed]
  29. J. Paye, A. Migus, “Space–time Wigner functions and their application to the analysis of a pulse shaper,” J. Opt. Soc. Am. B 12, 1480–1490 (1995).
    [CrossRef]
  30. W. H. Glenn, “Second harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. QE-5, 281–290 (1969).
  31. A. M. Weiner, “Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. QE-19, 1276–1283 (1983).
    [CrossRef]
  32. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 4.
  33. D. J. Kane, R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
    [CrossRef] [PubMed]
  34. D. L. Lee, Electromagnetic Principles of Integrated Optics (Wiley, New York, 1986), Chap. 10.

1996 (2)

1995 (10)

J. Paye, A. Migus, “Space–time Wigner functions and their application to the analysis of a pulse shaper,” J. Opt. Soc. Am. B 12, 1480–1490 (1995).
[CrossRef]

M. M. Wefers, K. A. Nelson, “Generation of high-fidelity programmable ultrafast optical waveforms,” Opt. Lett. 20, 1047–1049 (1995).
[CrossRef] [PubMed]

M. C. Nuss, R. L. Morrison, “Time-domain images,” Opt. Lett. 20, 740–742 (1995).
[CrossRef] [PubMed]

P. C. Sun, Y. Mazurenko, W. S. C. Chang, P. K. L. Yu, Y. Fainman, “All optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
[CrossRef]

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, “Ultrafast space–time transformation of signals using spectral nonlinear optics,” Opt. Spectrosc. (USSR) 78, 122–128 (1995).

Y. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Beliaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 118, 594–600 (1995).
[CrossRef]

E. A. De Souza, M. C. Nuss, W. H. Knox, D. A. B. Miller, “Wavelength division multiplexing with femtosecond pulses,” Opt. Lett. 20, 1166–1168 (1995).
[CrossRef] [PubMed]

P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

M. Muller, J. Squier, G. J. Brakenhoff, “Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption,” Opt. Lett. 20, 1038–1040 (1995).
[CrossRef] [PubMed]

J. Che, J. L. Krause, M. Messina, K. R. Wilson, Y. J. Yan, “Detection and control of molecular quantum dynamics” J. Phys. Chem. 99, 14949–14958 (1995).
[CrossRef]

1994 (1)

1993 (7)

1992 (2)

S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412–413 (1992).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2253 (1992).
[CrossRef]

1991 (2)

1990 (4)

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
[CrossRef] [PubMed]

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All-optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1990).
[CrossRef]

Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–113 (1990).
[CrossRef]

1987 (1)

1983 (1)

A. M. Weiner, “Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. QE-19, 1276–1283 (1983).
[CrossRef]

1969 (1)

W. H. Glenn, “Second harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. QE-5, 281–290 (1969).

Alfano, R. R.

Asaki, M. T.

Barty, C. P. J.

Becker, P. C.

Beliaev, A. G.

Y. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Beliaev, V. E. Yashin, S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
[CrossRef] [PubMed]

Y. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Beliaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 118, 594–600 (1995).
[CrossRef]

Belyaev, A. G.

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, “Ultrafast space–time transformation of signals using spectral nonlinear optics,” Opt. Spectrosc. (USSR) 78, 122–128 (1995).

Brabec, T.

Brady, D. J.

Brakenhoff, G. J.

Brito Cruz, C. H.

Chang, W. S. C.

Che, J.

J. Che, J. L. Krause, M. Messina, K. R. Wilson, Y. J. Yan, “Detection and control of molecular quantum dynamics” J. Phys. Chem. 99, 14949–14958 (1995).
[CrossRef]

Chen, H.

Chen, Y.

Chiu, T. H.

Chizhov, S. A.

Colombeau, B.

C. Froehly, B. Colombeau, M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.

Cremer, C.

P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Curley, P. F.

Dahlen, M.

W. S. Warren, H. Rabitz, M. Dahlen, “Coherent control of quantum dynamics: the dream is alive,” Science 269, 1581–1589 (1993).
[CrossRef]

Das, B. B.

De Souza, E. A.

Dilworth, D.

Ema, K.

K. Ema, “Real-time ultrashort pulse shaping and pulse-shape measurement using a dynamic grating,” Jpn. J. Appl. Phys. Lett. 30, 2046–2049 (1991).
[CrossRef]

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All-optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1990).
[CrossRef]

Fainman, Y.

Fork, R. L.

Froehly, C.

C. Froehly, B. Colombeau, M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.

Fujimoto, J. G.

Garvey, D.

Glenn, W. H.

W. H. Glenn, “Second harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. QE-5, 281–290 (1969).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 4.

Guo, T.

Hanninen, P. E.

P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Hee, M. R.

Hell, S. W.

P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Heritage, J. P.

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

Hill, K. B.

Huang, C.-P.

Izatt, J. A.

Kane, D. J.

Kapteyn, H. C.

Knox, W. H.

Krause, J. L.

J. Che, J. L. Krause, M. Messina, K. R. Wilson, Y. J. Yan, “Detection and control of molecular quantum dynamics” J. Phys. Chem. 99, 14949–14958 (1995).
[CrossRef]

Krausz, F.

Kuwata-Gonokami, M.

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All-optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1990).
[CrossRef]

Leaird, D. E.

LeBlanc, C.

Lee, D. L.

D. L. Lee, Electromagnetic Principles of Integrated Optics (Wiley, New York, 1986), Chap. 10.

Leith, E.

Li, M.

Lopez, J.

Mazurenko, Y.

Mazurenko, Y. T.

Y. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Beliaev, V. E. Yashin, S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
[CrossRef] [PubMed]

Y. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Beliaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 118, 594–600 (1995).
[CrossRef]

Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–113 (1990).
[CrossRef]

Mazurenko, Yu. T.

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, “Ultrafast space–time transformation of signals using spectral nonlinear optics,” Opt. Spectrosc. (USSR) 78, 122–128 (1995).

Messina, M.

J. Che, J. L. Krause, M. Messina, K. R. Wilson, Y. J. Yan, “Detection and control of molecular quantum dynamics” J. Phys. Chem. 99, 14949–14958 (1995).
[CrossRef]

Migus, A.

Miller, D. A. B.

Morrison, R. L.

Muller, M.

Murnane, M. M.

Nelson, K. A.

Nuss, M. C.

Paek, E. G.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2253 (1992).
[CrossRef]

Patel, J. S.

Patrovi, A.

Paye, J.

Putilin, S. E.

Y. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Beliaev, V. E. Yashin, S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
[CrossRef] [PubMed]

Y. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Beliaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 118, 594–600 (1995).
[CrossRef]

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, “Ultrafast space–time transformation of signals using spectral nonlinear optics,” Opt. Spectrosc. (USSR) 78, 122–128 (1995).

Rabitz, H.

W. S. Warren, H. Rabitz, M. Dahlen, “Coherent control of quantum dynamics: the dream is alive,” Science 269, 1581–1589 (1993).
[CrossRef]

Raksi, F.

Reitze, D. H.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2253 (1992).
[CrossRef]

Rice, S. A.

S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412–413 (1992).
[CrossRef] [PubMed]

Rose-Petruck, C.

Salehi, J. A.

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

Salo, A. J.

P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Schmidt, A. J.

Shank, C. V.

Shimizu, F.

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All-optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1990).
[CrossRef]

Soini, E.

P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Spielmann, Ch.

Spiro, A. G.

Y. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Beliaev, V. E. Yashin, S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
[CrossRef] [PubMed]

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, “Ultrafast space–time transformation of signals using spectral nonlinear optics,” Opt. Spectrosc. (USSR) 78, 122–128 (1995).

Y. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Beliaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 118, 594–600 (1995).
[CrossRef]

Squier, J.

Squier, J. A.

Sun, P. C.

Swanson, E. A.

Trebino, R.

Valdmanis, J.

Vampouille, M.

C. Froehly, B. Colombeau, M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.

Verkhovskij, E. B.

Y. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Beliaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 118, 594–600 (1995).
[CrossRef]

Warren, W. S.

W. S. Warren, H. Rabitz, M. Dahlen, “Coherent control of quantum dynamics: the dream is alive,” Science 269, 1581–1589 (1993).
[CrossRef]

Wefers, M. M.

Weiner, A. M.

M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Patrovi, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664–666 (1994).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2253 (1992).
[CrossRef]

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
[CrossRef] [PubMed]

A. M. Weiner, “Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. QE-19, 1276–1283 (1983).
[CrossRef]

Wilson, K. R.

Wintner, E.

Wullert, J. R.

Yakovlev, V. V.

Yamakawa, K.

Yan, Y. J.

J. Che, J. L. Krause, M. Messina, K. R. Wilson, Y. J. Yan, “Detection and control of molecular quantum dynamics” J. Phys. Chem. 99, 14949–14958 (1995).
[CrossRef]

Yashin, V. E.

Yoo, K. M.

Yu, P. K. L.

Zhou, J.

Appl. Phys. B (1)

Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–113 (1990).
[CrossRef]

Appl. Phys. Lett. (2)

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All-optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1990).
[CrossRef]

P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2253 (1992).
[CrossRef]

W. H. Glenn, “Second harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. QE-5, 281–290 (1969).

A. M. Weiner, “Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. QE-19, 1276–1283 (1983).
[CrossRef]

J. Lightwave Technol. (1)

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

J. Che, J. L. Krause, M. Messina, K. R. Wilson, Y. J. Yan, “Detection and control of molecular quantum dynamics” J. Phys. Chem. 99, 14949–14958 (1995).
[CrossRef]

Jpn. J. Appl. Phys. Lett. (1)

K. Ema, “Real-time ultrashort pulse shaping and pulse-shape measurement using a dynamic grating,” Jpn. J. Appl. Phys. Lett. 30, 2046–2049 (1991).
[CrossRef]

Opt. Commun. (1)

Y. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Beliaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 118, 594–600 (1995).
[CrossRef]

Opt. Lett. (17)

Y. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Beliaev, V. E. Yashin, S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
[CrossRef] [PubMed]

M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Patrovi, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664–666 (1994).
[CrossRef] [PubMed]

M. C. Nuss, R. L. Morrison, “Time-domain images,” Opt. Lett. 20, 740–742 (1995).
[CrossRef] [PubMed]

P. C. Sun, Y. Mazurenko, W. S. C. Chang, P. K. L. Yu, Y. Fainman, “All optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
[CrossRef] [PubMed]

D. J. Kane, R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
[CrossRef] [PubMed]

K. B. Hill, D. J. Brady, “Pulse shaping in volume reflection holograms,” Opt. Lett. 18, 1739–1741 (1993).
[CrossRef] [PubMed]

M. M. Wefers, K. A. Nelson, “Generation of high-fidelity programmable ultrafast optical waveforms,” Opt. Lett. 20, 1047–1049 (1995).
[CrossRef] [PubMed]

M. Muller, J. Squier, G. J. Brakenhoff, “Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption,” Opt. Lett. 20, 1038–1040 (1995).
[CrossRef] [PubMed]

E. A. De Souza, M. C. Nuss, W. H. Knox, D. A. B. Miller, “Wavelength division multiplexing with femtosecond pulses,” Opt. Lett. 20, 1166–1168 (1995).
[CrossRef] [PubMed]

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Femtosecond transillumination tomography in thick tissue,” Opt. Lett. 18, 1107–1109 (1993).
[CrossRef]

B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
[CrossRef]

R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
[CrossRef] [PubMed]

M. T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993).
[CrossRef] [PubMed]

P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, “Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero groupdelay dispersion,” Opt. Lett. 18, 54–56 (1993).
[CrossRef] [PubMed]

C. P. J. Barty, T. Guo, C. LeBlanc, F. Raksi, C. Rose-Petruck, J. A. Squier, K. R. Wilson, V. V. Yakovlev, K. Yamakawa, “Generation of 18-fs, multiterawatt pulses using regenerative pulse,” Opt. Lett. 21, 668–670 (1996).
[CrossRef] [PubMed]

Opt. Spectrosc. (USSR) (1)

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, “Ultrafast space–time transformation of signals using spectral nonlinear optics,” Opt. Spectrosc. (USSR) 78, 122–128 (1995).

Science (2)

S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412–413 (1992).
[CrossRef] [PubMed]

W. S. Warren, H. Rabitz, M. Dahlen, “Coherent control of quantum dynamics: the dream is alive,” Science 269, 1581–1589 (1993).
[CrossRef]

Other (3)

C. Froehly, B. Colombeau, M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.

D. L. Lee, Electromagnetic Principles of Integrated Optics (Wiley, New York, 1986), Chap. 10.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the pulse-shaping device with a spectral domain spatial filter.

Fig. 2
Fig. 2

Schematic diagram of the femtosecond pulse imaging system based on nonlinear spectral domain three-wave mixing in a LBO crystal.

Fig. 3
Fig. 3

Illustration of (a) spectral decomposition waves (SDW's) and (b) corresponding time-dependent wave vectors of a transform-limited pulse in the Fourier plane of the pulse imaging system.

Fig. 4
Fig. 4

(a) Illustration of nonlinear three-wave interaction of the SDW's of the two transform-limited pulses in the nonlinear crystal producing a second-harmonic field with a constant temporal frequency and a linear spatial carrier frequency depending on the relative delay between the two pulses, (b) k-vector diagram showing the instantaneous phase-matching condition for three-wave mixing.

Fig. 5
Fig. 5

Recorded pulse images that are equivalent to the autocorrelation function of a transform-limited pulse. The two images are obtained by changing the relative delay of the reference pulse by 6.35 mm, corresponding to 21.17 ps.

Fig. 6
Fig. 6

Images of shaped pulses obtained with the femtosecond pulse imaging system of Fig. 2. The shaped pulses are obtained by using the pulse-shaping device of Fig. 1 with spectral filter implemented by (a) a binary phase grating and (b) a Ronchi grating (50/50).

Fig. 7
Fig. 7

(a) Schematic diagram of a setup for imaging of negative chirped, transform-limited, and positive chirped pulses produced with a 1-D diffractive lens used as the spectral filter in the pulse-shaping device. (b) The three images obtained at the three observation planes demonstrate that the chirp pulses in the time domain can occur as images of transform-limited pulses in the space domain by variation of the longitudinal coordinate of the observation plane.

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

ui(t)=u¯i(t)exp(jωct)
us(t)=u¯s(t)exp(jωct),
m(t)=m¯(t)exp(jωct)=- M¯(ω-ωc)exp(jωt)dω.
us(t)=ui(t)m(t)=- U¯i(ω-ωc)M¯(ω-ωc)exp(jωt)dω=- U¯s(ω-ωc)exp(jωt)dω,
U¯i(ω-ωc)=- u¯i(t)exp(jωct)exp(-jωt)dt,
U¯s(ω-ωc)=- u¯s(t)exp(jωct)exp(-jωt)dt,
U¯1s(x; ω, t)=U¯s(ω-ωc)exp(jωt)×exp-j ω-ωccαxw(x),
U2s(fx; ω, t)=U¯s(ω-ωc)exp(jωt)×Wfx+(ω-ωc)α2πc=U¯s(ω-ωc)exp(jωt)×Wωx2πcF+(ω-ωc)α2πc,
u2s(x; t)=- U2s(x; ω, t)dω=- U¯s(ω-ωc)×Wωx2πcF+(ω-ωc)α2πcexp(jωt)dω.
u2s(x; t)U¯s-xx+αFωc×-Wωx2πcF+(ω-ωc)α2πc×exp(jωt)dω=U¯s-xx+αFωcwctFx+αF×expjωc αFtx+αF,
ω=αFx+αFωc.
u2s(x; t)U¯s-xωcαFw1-xαF ctα×expjωc1-xαFt.
kxs(t)=-ϕs(x, t)x=ωctFα,
ur(t-Δt)=u¯r(t-Δt)exp(jωct),
U¯r(ω-ωc)exp(-jωΔt)=- u¯r(t-Δt)exp(jωct)×exp(-jωt)dt.
u2r(x; t)U¯rxωcαFw-1+xαF c(t-Δt)α×expjωc1+xαF(t-Δt).
kxr(t)=-ϕr(x, t)x=-ωc(t+Δt)F sin θ.
uII(x, t)=Ku2s(x; t)u2r(x; t)=Kw1-xαF ctα×w-1+xαF c(t-Δt)α×U¯s-xωcαFU¯rxωcαF×exp-j 2ωcxαFΔt2exp(j2ωct)=K[a(x; t)][b(x)]exp(j2ωct),
a(x, t)=w1-xαF ctαw-1+xαF c(t-Δt)α,
b(x)=U¯s-xωcαFU¯rxωcαFexp-j 2ωcxαFΔt2.
a(x, t)a(t)=wctαw-c(t-Δt)α.
uII(x, t)=B(x)a(t)exp(j2ωct),
B(x)=- b(x)exp(j2πfxx)dx=- U¯s-xωcαFU¯rxωcαF×exp-j 2ωcxαFΔt2×exp(j2πfxx)dx=u¯s-2αcxu¯r2αc(x-Δx),
k2ω=ks+kr,
kx2ω=kxs(t)+kxr(t)=ωcΔtFα.
u¯s(t)=p(t)m¯(t),
u¯r(t)=p(t),
u¯s(t)=n Anp(t-Δtn),
B(x)=n Anp2αc(x-Δxn)
* p2αc(x-Δx)
u¯s(t)=p(t)exp-j t22β.
B(x)=p-2αcxexp-j 2α2x2c2βp2αc(x-Δx)=p2αcx * p2αc(x-Δx)exp-j 2α2x2c2β.
z=-c2α2 βk0=-βcωc2α2
ω=αpFpxp+αpFpωc,
Ω=ω-ωc=-xpωcαpFp,
us(t)=exp(jωct) - U¯i(Ω)M¯αpFpΩωcexp(jΩt)dΩ=u¯i(t)m¯tωcαpFpexp(jωct).
M¯(xp)=GxpΔxpcombxpΔxp,
us(t)=p(t)gΔxptωc2παpFp×combΔxpωc2παpFptexp(jωct)
=p(t)gtΔtpcombtΔtpexp(jωct),
M¯(xp)=exp-j πλcfxp2.
us(t)=p(t)exp-j t22βexp(jωct),
σ=(σ-2+σ2β2)-1/2.
z=-βcωc2α2=-αp2Fp22 fα2,

Metrics