Abstract

We discuss examples of designs for all-dielectric reflection gratings that tolerate high intensity and are potentially capable of placing up to 99% of the incident light into a single diffraction order, such as are needed for contemporary high-power lasers utilizing chirped-pulse amplification. The designs are based on placing a dielectric transmission grating atop a high-reflectivity (HR) multilayer dielectric stack. We comment on the connection between transmission gratings and reflection gratings and note that the grating and the HR stack can, to a degree, be treated independently. Because many combinations of gratings and multilayer stacks offer high efficiency, it is possible to attain secondary objectives in the design. We describe examples of such designs aimed toward improving fabrication and lowering the susceptibility to laser-induced damage. We present examples of the dependence of grating efficiency on grating characteristics. We describe examples of high-efficiency (95%) gratings that we have fabricated by using hafnia and silica multilayers.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
    [CrossRef]
  2. O. E. Martinez, J. P. Gordon, R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1, 1003–1006 (1984).
    [CrossRef]
  3. D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [CrossRef]
  4. O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. QE-23, 59–64 (1987).
    [CrossRef]
  5. P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–402 (1988).
    [CrossRef]
  6. M. Pessot, J. Squier, G. Mourou, D. Harter, “Chirped-pulse amplification of 100-fsec pulses,” Opt. Lett. 14, 797–799 (1989).
    [CrossRef] [PubMed]
  7. W. Rudolph, B. Wilhelmi, Light Pulse Compression (Harwood, London, 1989).
  8. M. Ferray, L. A. Lompré, O. Gobert, A. L’Huilleir, G. Mainfray, C. Manus, A. Sanchéz, “Multiterawatt picosecond Nd–glass laser system at 1053 nm,” Opt. Commun. 75, 278–282 (1990).
    [CrossRef]
  9. M. D. Perry, F. G. Patterson, J. Weston, “Spectral shaping in chirped-pulse amplification,” Opt. Lett. 15, 381–383 (1990).
    [CrossRef] [PubMed]
  10. C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).
  11. T. Ditmire, M. D. Perry, “Terawatt Cr-LiSrAlF6 laser system,” Opt. Lett. 18, 426–428 (1993).
    [CrossRef] [PubMed]
  12. J. V. Rudd, G. Korn, S. Kane, J. Squier, G. Mourou, P. Bado, “Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti-Al2O3 regenerative amplifier,” Opt. Lett. 18, 2044–2046 (1993).
    [CrossRef]
  13. M. D. Perry, G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
    [CrossRef] [PubMed]
  14. B. C. Stuart, S. Herman, M. D. Perry, “Chirped-pulse amplification in Ti-sapphire beyond 1 mµ,” IEEE J. Quantum Electron. 31, 528–538 (1995).
    [CrossRef]
  15. R. Boyd, J. Britten, D. Decker, B. W. Shore, B. Stuart, M. D. Perry, L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt. 34, 1697–1706 (1995).
    [CrossRef] [PubMed]
  16. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [CrossRef] [PubMed]
  17. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, E. Shults, L. Li, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995).
    [CrossRef] [PubMed]
  18. M. C. Hutley, “Interference diffraction gratings,” Sci. Prog. (London) 61, 301–321 (1972).
  19. L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
    [CrossRef]
  20. R. C. Enger, S. K. Case, “High-frequency holographic transmission gratings in photoresist,” J. Opt. Soc. Am. 73, 1113–1118 (1983).
    [CrossRef]
  21. K. Yokomori, “Dielectric surface relief gratings with high diffraction efficiency,” Appl. Opt. 23, 2303–2310 (1984).
    [CrossRef]
  22. E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
    [CrossRef]
  23. J. J. Armstrong, “Holographic generation of ultra-high-efficiency large-aperture transmission diffraction gratings,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1993).
  24. K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” Appl. Opt. 19, 282–288 (1978).
  25. D. E. Tremain, K. K. Mei, “Application of the unimoment method to scattering from periodic dielectric structures,” J. Opt. Soc. Am. 68, 775–783 (1978).
    [CrossRef]
  26. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
    [CrossRef]
  27. R. C. Enger, S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983).
    [CrossRef] [PubMed]
  28. D. M. Pai, K. A. Awada, “Analysis of dielectric gratings of arbitrary profiles and thicknesses,” J. Opt. Soc. Am. A 9, 755–762 (1991).
    [CrossRef]
  29. A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
    [CrossRef]
  30. A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).
  31. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1955).
  32. P. Baumeister, “Interference and optical interference coatings,” in Applied Optics and Optical Engineering, R. Kingslake, ed. (Academic, New York, 1965), Vol. 1, pp. 285–323.
  33. Z. Knittl, Optics of Thin Films (Wiley, New York, 1976).
  34. A. Macleod, Thin Film Optical Filters (Hilger, Bristol, UK, 1986).
  35. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  36. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989).
  37. J. C. Rife, W. R. Hunter, T. W. Barbee, R. G. Cruddace, “Multilayer-coated blazed grating performance in the soft x-ray region,” Appl. Opt. 28, 2984–2986 (1989).
    [CrossRef] [PubMed]
  38. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  39. M. G. Moharam, T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983).
    [CrossRef]
  40. A. I. Erko, B. Vidal, P. Vincent, Y. A. Agafonov, V. V. Martynov, D. V. Roschupkin, M. Brunel, “Multilayer gratings efficiency—numerical and physical experiments,” Nucl. Instrum. Methods A 333, 599–606 (1993).
    [CrossRef]
  41. V. Martynov, B. Vidal, P. Vincent, M. Brunel, D. V. Roschupkin, Y. Agafonov, A. Erko, A. Yuakshin, “Comparison of modal and differential methods for multilayer gratings,” Nucl. Instrum. Methods A 339, 617–625 (1994).
    [CrossRef]
  42. A. Erko, V. Martynov, D. Roshchoupkin, A. Yuakshin, B. Vidal, P. Vincent, M. Brunel, “Multilayer diffraction grating properties,” J. Phys. (Paris) III 4, 1649–1658 (1994).
  43. L. Mashev, E. Popov, “Diffraction efficiency anomalies of multicoated dielectric gratings,” Opt. Commun. 51, 131–136 (1984).
    [CrossRef]
  44. J. M. Elson, L. F. DeSandre, J. L. Stanford, “Analysis of anomalous resonance effects in multilayer-overcoated, low-efficiency gratings,” J. Opt. Soc. Am. A 5, 74–88 (1988).
    [CrossRef]
  45. L. F. DeSandre, J. M. Elson, “Extinction-theorem analysis of diffraction anomalies in overcoated gratings,” J. Opt. Soc. Am. A 8, 763–777 (1991).
    [CrossRef]
  46. L. Li, J. Hirsch, “All-dielectric high-efficiency reflection gratings made with multilayer thin-film coatings,” Opt. Lett. 20, 1349–1351 (1995).
    [CrossRef] [PubMed]
  47. J. A. Britten, R. D. Boyd, B. W. Shore, “In situ end-point detection during development of submicrometer grating structures in photoresist,” Opt. Eng. 34, 474–479 (1995).
    [CrossRef]
  48. S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta 29, 1371–1381 (1982).
    [CrossRef]
  49. A. R. Neureuther, W. G. Oldham, “Resist modeling and profile simulation,” Solid State Technol. 28, 139–144 (1985).
  50. M. G. Moharam, T. K. Gaylord, G. T. Sincerbox, H. Werlich, B. Yung, “Diffraction characteristics of photoresist surface-relief gratings,” Appl. Opt. 23, 3214–3220 (1984).
    [CrossRef] [PubMed]
  51. H. L. Garvin, A. Au, M. L. Minden, “Ion-etched gratings for laser applications,” in Periodic Structures, Gratings, Moire Patterns, and Diffraction Phenomena I, C. H. Chi, ed., Proc. SPIE240, 63–68 (1981).
    [CrossRef]
  52. R. A. Powell, Dry Etching for Microelectronics (Elsevier, New York, 1984).
  53. L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. SPIE835, 72–82 (1988).
    [CrossRef]
  54. D. M. Manos, D. L. Flamm, eds., Plasma Etching, An Introduction (Academic, San Diego, Calif., 1989).
  55. H. Berrouane, J. M. Andre, R. Barchewitz, T. Moreno, A. Sammar, C. K. Malek, B. Pardo, R. Rivoira, “Experimental and theoretical performances of an etched lamellar multilayer grating in the 1 keV region,” Nucl. Instrum. Methods A 312, 521–530 (1992).
    [CrossRef]
  56. I. Brodie, J. J. Muray, The Physics of Micro/Nanofabrication (Plenum, New York, 1992).
  57. R. Magnusson, T. K. Gaylord, “Analysis of multiwave diffraction of thick gratings,” J. Opt. Soc. Am. 67, 1165–1170 (1977).
    [CrossRef]
  58. D. Maystre, “A new general integral theory for dielectric coated gratings,” J. Opt. Soc. Am. 68, 490–495 (1978).
    [CrossRef]
  59. K. Yasuura, M. Tomita, “Numerical analysis of plane wave scattering from dielectric gratings,” Trans. Inst. Electr. Commun. Eng. Jpn. J61-B, 662–669 (1978).
  60. J. M. Elson, “Diffraction and diffuse scattering from dielectric multilayers,” J. Opt. Soc. Am. 69, 48–54 (1979).
    [CrossRef]
  61. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
    [CrossRef]
  62. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  63. S. L. Chuang, J. A. Kong, “Wave scattering from a periodic dielectric surface for a general angle of incidence,” Radio Sci. 17, 545–557 (1982).
    [CrossRef]
  64. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of grating diffraction—E-mode polarization and losses,” J. Opt. Soc. Am. 73, 451–455 (1983).
    [CrossRef]
  65. R. A. Depine, C. I. Valencia, “Diffraction from corrugated dielectric gratings: general case of oblique incidence,” J. Mod. Opt. 39, 2089–2112 (1992).
    [CrossRef]
  66. M. Nevière, E. Popov, “Analysis of dielectric gratings of arbitrary profiles and thicknesses: comment,” J. Opt. Soc. Am. A 9, 2095–2096 (1992).
    [CrossRef]
  67. M. Nevière, F. Montiel, “Deep gratings: a combination of the differential theory and the multiple reflection series,” Opt. Commun. 108, 1–7 (1994).
    [CrossRef]
  68. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond to femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1995).
    [CrossRef]
  69. E. Popov, “Light diffraction by relief gratings: a macroscopic and microscopic view,” Prog. Opt. 31, 141–190 (1993).
  70. M. Nevière, P. Vincent, R. Petit, “Theory of conducting gratings and their applications to optics,” Nouv. Rev. Opt. 2, 65–77 (1974).
    [CrossRef]
  71. R. Petit, “Electromagnetic grating theories: limitations and successes,” Nouv. Rev. Opt. 3, 129–135 (1975).
    [CrossRef]
  72. J. R. Andrewartha, J. R. Fox, I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Acta 26, 69–89 (1979).
    [CrossRef]
  73. G. M. Whitman, D. M. Leskiw, F. Schwering, “Rigorous theory of scattering by perfectly conducting periodic surfaces with trapezoidal height profile. TE and TM polarization,” J. Opt. Soc. Am. 70, 1495–1503 (1980).
    [CrossRef]
  74. D. Maystre, M. Nevière, R. Petit, “Experimental verifications and applications of the theory,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, New York, 1980), pp. 159–225.
  75. M. Cadilhac, “Some mathematical aspects of the grating theory,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), pp. 101–156.
  76. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
    [CrossRef]
  77. L. C. Botten, M. S. Craig, R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
    [CrossRef]
  78. R. A. Depine, J. M. Simon, “Diffraction grating efficiencies: an exact differential algorithm valid for high conductivities,” Opt. Acta 30, 1273–1286 (1983).
    [CrossRef]
  79. A. Wirgin, A. Maradudin, “Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light,” Phys. Rev. B 31, 5573–5576 (1985).
    [CrossRef]
  80. R. A. Depine, “Perfectly conducting diffraction grating formalisms extended to good conductors via the surface impedance boundary condition,” Appl. Opt. 26, 2348–2354 (1987).
    [CrossRef] [PubMed]
  81. L. Mashev, E. Popov, “Anomalies of metallic diffraction gratings,” J. Opt. Soc. Am. A 6, 1561–1567 (1989).
    [CrossRef]
  82. D. Maystre, M. Nevière, M. Renisch, J. L. Coutaz, “Integral theory for metallic gratings in nonlinear optics and comparison with experimental results on second-harmonic generation,” J. Opt. Soc. Am. B 5, 338–351 (1988).
    [CrossRef]
  83. E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties of the Littrow mounting and energy flow distribution,” J. Mod. Opt. 37, 367–377 (1990).
    [CrossRef]
  84. R. Petit, ed., Electromagnetic Theory of Gratings (Springer, Berlin, 1980).
  85. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993).
    [CrossRef]
  86. L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
    [CrossRef]
  87. L. Li, “Multilayer-coated diffraction gratings: differential method of Chandezon et al. revisited,” J. Opt. Soc. Am. A 11, 2816–2828 (1994).
    [CrossRef]
  88. L. Li, “Bremmer series, R-matrix propagation algorithm, and numerical modeling of diffraction gratings,” J. Opt. Soc. Am. A 11, 2829–2836 (1994).
    [CrossRef]
  89. L. C. Botten, M. S. Craig, R. C. McPhedran, “Complex zeros of analytic functions,” Comput. Phys. Commun. 29, 245–259 (1983).
    [CrossRef]
  90. M. C. Hutley, Diffraction Gratings (Academic, New York, 1982).
  91. J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, “Universal grating design for pulse stretching and compression in the 800–1100-nm range,” Opt. Lett. 21, 540–542 (1996).
    [CrossRef] [PubMed]
  92. M. R. Kozlowski, R. Chow, I. M. Thomas, “Optical coatings for high power lasers,” in CRC Handbook of Laser Science and Technology Supplement 2, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), pp. 767–812.
  93. K. C. Chang, V. Shah, T. Tamir, “Scattering and guiding of waves by dielectric gratings with arbitrary profiles,” J. Opt. Soc. Am. 70, 804–813 (1980).
    [CrossRef]
  94. R. Alferness, “Analysis of optical propagation in thick holographic gratings,” Appl. Phys. 7, 29–33 (1975).
    [CrossRef]
  95. S. F. Su, T. K. Gaylord, “Calculation of arbitrary-order diffraction efficiencies of thick gratings with arbitrary grating shape,” J. Opt. Soc. Am. 65, 59–64 (1975).
    [CrossRef]
  96. M. Nieto Vesperinas, J. M. Soto Crespo, “Light diffracted intensities from very deep gratings,” Phys. Rev. B 38, 7250–7259 (1988).
    [CrossRef]
  97. M. Breidne, D. Maystre, “Equivalence of ruled, holographic, and lamellar gratings in constant deviation mountings,” Appl. Opt. 19, 1812–1821 (1980).
    [CrossRef] [PubMed]
  98. H. G. Booker, “The elements of wave propagation using the impedance concept,” J. Inst. Electr. Eng. Part 3 94, 171–184 (1947).
  99. A. K. Cousins, S. C. Gottschalk, “Application of the impedance formalism to diffraction gratings with multiple coating layers,” Appl. Opt. 29, 4268–4271 (1990).
    [CrossRef] [PubMed]
  100. R. Hermann, “Quarterwave layers: simulation by three thin layers of two materials,” Appl. Opt. 24, 1183–1188 (1985).
    [CrossRef]
  101. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1995).
    [CrossRef]

1996 (1)

1995 (8)

R. Boyd, J. Britten, D. Decker, B. W. Shore, B. Stuart, M. D. Perry, L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt. 34, 1697–1706 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1995).
[CrossRef]

M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, E. Shults, L. Li, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995).
[CrossRef] [PubMed]

L. Li, J. Hirsch, “All-dielectric high-efficiency reflection gratings made with multilayer thin-film coatings,” Opt. Lett. 20, 1349–1351 (1995).
[CrossRef] [PubMed]

B. C. Stuart, S. Herman, M. D. Perry, “Chirped-pulse amplification in Ti-sapphire beyond 1 mµ,” IEEE J. Quantum Electron. 31, 528–538 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

J. A. Britten, R. D. Boyd, B. W. Shore, “In situ end-point detection during development of submicrometer grating structures in photoresist,” Opt. Eng. 34, 474–479 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond to femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1995).
[CrossRef]

1994 (7)

M. Nevière, F. Montiel, “Deep gratings: a combination of the differential theory and the multiple reflection series,” Opt. Commun. 108, 1–7 (1994).
[CrossRef]

M. D. Perry, G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

V. Martynov, B. Vidal, P. Vincent, M. Brunel, D. V. Roschupkin, Y. Agafonov, A. Erko, A. Yuakshin, “Comparison of modal and differential methods for multilayer gratings,” Nucl. Instrum. Methods A 339, 617–625 (1994).
[CrossRef]

A. Erko, V. Martynov, D. Roshchoupkin, A. Yuakshin, B. Vidal, P. Vincent, M. Brunel, “Multilayer diffraction grating properties,” J. Phys. (Paris) III 4, 1649–1658 (1994).

L. Li, “Multilayer-coated diffraction gratings: differential method of Chandezon et al. revisited,” J. Opt. Soc. Am. A 11, 2816–2828 (1994).
[CrossRef]

L. Li, “Bremmer series, R-matrix propagation algorithm, and numerical modeling of diffraction gratings,” J. Opt. Soc. Am. A 11, 2829–2836 (1994).
[CrossRef]

1993 (6)

L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
[CrossRef]

L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993).
[CrossRef]

T. Ditmire, M. D. Perry, “Terawatt Cr-LiSrAlF6 laser system,” Opt. Lett. 18, 426–428 (1993).
[CrossRef] [PubMed]

A. I. Erko, B. Vidal, P. Vincent, Y. A. Agafonov, V. V. Martynov, D. V. Roschupkin, M. Brunel, “Multilayer gratings efficiency—numerical and physical experiments,” Nucl. Instrum. Methods A 333, 599–606 (1993).
[CrossRef]

E. Popov, “Light diffraction by relief gratings: a macroscopic and microscopic view,” Prog. Opt. 31, 141–190 (1993).

J. V. Rudd, G. Korn, S. Kane, J. Squier, G. Mourou, P. Bado, “Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti-Al2O3 regenerative amplifier,” Opt. Lett. 18, 2044–2046 (1993).
[CrossRef]

1992 (5)

M. Nevière, E. Popov, “Analysis of dielectric gratings of arbitrary profiles and thicknesses: comment,” J. Opt. Soc. Am. A 9, 2095–2096 (1992).
[CrossRef]

H. Berrouane, J. M. Andre, R. Barchewitz, T. Moreno, A. Sammar, C. K. Malek, B. Pardo, R. Rivoira, “Experimental and theoretical performances of an etched lamellar multilayer grating in the 1 keV region,” Nucl. Instrum. Methods A 312, 521–530 (1992).
[CrossRef]

R. A. Depine, C. I. Valencia, “Diffraction from corrugated dielectric gratings: general case of oblique incidence,” J. Mod. Opt. 39, 2089–2112 (1992).
[CrossRef]

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

1991 (3)

1990 (4)

M. D. Perry, F. G. Patterson, J. Weston, “Spectral shaping in chirped-pulse amplification,” Opt. Lett. 15, 381–383 (1990).
[CrossRef] [PubMed]

E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties of the Littrow mounting and energy flow distribution,” J. Mod. Opt. 37, 367–377 (1990).
[CrossRef]

A. K. Cousins, S. C. Gottschalk, “Application of the impedance formalism to diffraction gratings with multiple coating layers,” Appl. Opt. 29, 4268–4271 (1990).
[CrossRef] [PubMed]

M. Ferray, L. A. Lompré, O. Gobert, A. L’Huilleir, G. Mainfray, C. Manus, A. Sanchéz, “Multiterawatt picosecond Nd–glass laser system at 1053 nm,” Opt. Commun. 75, 278–282 (1990).
[CrossRef]

1989 (3)

1988 (4)

D. Maystre, M. Nevière, M. Renisch, J. L. Coutaz, “Integral theory for metallic gratings in nonlinear optics and comparison with experimental results on second-harmonic generation,” J. Opt. Soc. Am. B 5, 338–351 (1988).
[CrossRef]

J. M. Elson, L. F. DeSandre, J. L. Stanford, “Analysis of anomalous resonance effects in multilayer-overcoated, low-efficiency gratings,” J. Opt. Soc. Am. A 5, 74–88 (1988).
[CrossRef]

M. Nieto Vesperinas, J. M. Soto Crespo, “Light diffracted intensities from very deep gratings,” Phys. Rev. B 38, 7250–7259 (1988).
[CrossRef]

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–402 (1988).
[CrossRef]

1987 (2)

O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. QE-23, 59–64 (1987).
[CrossRef]

R. A. Depine, “Perfectly conducting diffraction grating formalisms extended to good conductors via the surface impedance boundary condition,” Appl. Opt. 26, 2348–2354 (1987).
[CrossRef] [PubMed]

1986 (1)

1985 (4)

A. Wirgin, A. Maradudin, “Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light,” Phys. Rev. B 31, 5573–5576 (1985).
[CrossRef]

R. Hermann, “Quarterwave layers: simulation by three thin layers of two materials,” Appl. Opt. 24, 1183–1188 (1985).
[CrossRef]

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

A. R. Neureuther, W. G. Oldham, “Resist modeling and profile simulation,” Solid State Technol. 28, 139–144 (1985).

1984 (4)

1983 (6)

1982 (3)

M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
[CrossRef]

S. L. Chuang, J. A. Kong, “Wave scattering from a periodic dielectric surface for a general angle of incidence,” Radio Sci. 17, 545–557 (1982).
[CrossRef]

S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta 29, 1371–1381 (1982).
[CrossRef]

1981 (5)

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[CrossRef]

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
[CrossRef]

M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
[CrossRef]

1980 (3)

1979 (2)

J. R. Andrewartha, J. R. Fox, I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Acta 26, 69–89 (1979).
[CrossRef]

J. M. Elson, “Diffraction and diffuse scattering from dielectric multilayers,” J. Opt. Soc. Am. 69, 48–54 (1979).
[CrossRef]

1978 (4)

1977 (1)

1975 (3)

S. F. Su, T. K. Gaylord, “Calculation of arbitrary-order diffraction efficiencies of thick gratings with arbitrary grating shape,” J. Opt. Soc. Am. 65, 59–64 (1975).
[CrossRef]

R. Alferness, “Analysis of optical propagation in thick holographic gratings,” Appl. Phys. 7, 29–33 (1975).
[CrossRef]

R. Petit, “Electromagnetic grating theories: limitations and successes,” Nouv. Rev. Opt. 3, 129–135 (1975).
[CrossRef]

1974 (1)

M. Nevière, P. Vincent, R. Petit, “Theory of conducting gratings and their applications to optics,” Nouv. Rev. Opt. 2, 65–77 (1974).
[CrossRef]

1972 (1)

M. C. Hutley, “Interference diffraction gratings,” Sci. Prog. (London) 61, 301–321 (1972).

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

1947 (1)

H. G. Booker, “The elements of wave propagation using the impedance concept,” J. Inst. Electr. Eng. Part 3 94, 171–184 (1947).

Adams, J. L.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

Agafonov, Y.

V. Martynov, B. Vidal, P. Vincent, M. Brunel, D. V. Roschupkin, Y. Agafonov, A. Erko, A. Yuakshin, “Comparison of modal and differential methods for multilayer gratings,” Nucl. Instrum. Methods A 339, 617–625 (1994).
[CrossRef]

Agafonov, Y. A.

A. I. Erko, B. Vidal, P. Vincent, Y. A. Agafonov, V. V. Martynov, D. V. Roschupkin, M. Brunel, “Multilayer gratings efficiency—numerical and physical experiments,” Nucl. Instrum. Methods A 333, 599–606 (1993).
[CrossRef]

Alferness, R.

R. Alferness, “Analysis of optical propagation in thick holographic gratings,” Appl. Phys. 7, 29–33 (1975).
[CrossRef]

Andre, J. M.

H. Berrouane, J. M. Andre, R. Barchewitz, T. Moreno, A. Sammar, C. K. Malek, B. Pardo, R. Rivoira, “Experimental and theoretical performances of an etched lamellar multilayer grating in the 1 keV region,” Nucl. Instrum. Methods A 312, 521–530 (1992).
[CrossRef]

Andrewartha, J. R.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
[CrossRef]

J. R. Andrewartha, J. R. Fox, I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Acta 26, 69–89 (1979).
[CrossRef]

Armstrong, J. J.

J. J. Armstrong, “Holographic generation of ultra-high-efficiency large-aperture transmission diffraction gratings,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1993).

Au, A.

H. L. Garvin, A. Au, M. L. Minden, “Ion-etched gratings for laser applications,” in Periodic Structures, Gratings, Moire Patterns, and Diffraction Phenomena I, C. H. Chi, ed., Proc. SPIE240, 63–68 (1981).
[CrossRef]

Awada, K. A.

Bado, P.

J. V. Rudd, G. Korn, S. Kane, J. Squier, G. Mourou, P. Bado, “Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti-Al2O3 regenerative amplifier,” Opt. Lett. 18, 2044–2046 (1993).
[CrossRef]

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–402 (1988).
[CrossRef]

Barbee, T. W.

Barchewitz, R.

H. Berrouane, J. M. Andre, R. Barchewitz, T. Moreno, A. Sammar, C. K. Malek, B. Pardo, R. Rivoira, “Experimental and theoretical performances of an etched lamellar multilayer grating in the 1 keV region,” Nucl. Instrum. Methods A 312, 521–530 (1992).
[CrossRef]

Barzanti, L. J.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Baumeister, P.

P. Baumeister, “Interference and optical interference coatings,” in Applied Optics and Optical Engineering, R. Kingslake, ed. (Academic, New York, 1965), Vol. 1, pp. 285–323.

Berrouane, H.

H. Berrouane, J. M. Andre, R. Barchewitz, T. Moreno, A. Sammar, C. K. Malek, B. Pardo, R. Rivoira, “Experimental and theoretical performances of an etched lamellar multilayer grating in the 1 keV region,” Nucl. Instrum. Methods A 312, 521–530 (1992).
[CrossRef]

Booker, H. G.

H. G. Booker, “The elements of wave propagation using the impedance concept,” J. Inst. Electr. Eng. Part 3 94, 171–184 (1947).

Botten, L. C.

L. C. Botten, M. S. Craig, R. C. McPhedran, “Complex zeros of analytic functions,” Comput. Phys. Commun. 29, 245–259 (1983).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[CrossRef]

Boyd, R.

Boyd, R. D.

Breidne, M.

Britten, J.

Britten, J. A.

Brodie, I.

I. Brodie, J. J. Muray, The Physics of Micro/Nanofabrication (Plenum, New York, 1992).

Brunel, M.

V. Martynov, B. Vidal, P. Vincent, M. Brunel, D. V. Roschupkin, Y. Agafonov, A. Erko, A. Yuakshin, “Comparison of modal and differential methods for multilayer gratings,” Nucl. Instrum. Methods A 339, 617–625 (1994).
[CrossRef]

A. Erko, V. Martynov, D. Roshchoupkin, A. Yuakshin, B. Vidal, P. Vincent, M. Brunel, “Multilayer diffraction grating properties,” J. Phys. (Paris) III 4, 1649–1658 (1994).

A. I. Erko, B. Vidal, P. Vincent, Y. A. Agafonov, V. V. Martynov, D. V. Roschupkin, M. Brunel, “Multilayer gratings efficiency—numerical and physical experiments,” Nucl. Instrum. Methods A 333, 599–606 (1993).
[CrossRef]

Cadilhac, M.

M. Cadilhac, “Some mathematical aspects of the grating theory,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), pp. 101–156.

Case, S. K.

Chang, K. C.

Chang, Z.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Chow, R.

M. R. Kozlowski, R. Chow, I. M. Thomas, “Optical coatings for high power lasers,” in CRC Handbook of Laser Science and Technology Supplement 2, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), pp. 767–812.

Chuang, S. L.

S. L. Chuang, J. A. Kong, “Wave scattering from a periodic dielectric surface for a general angle of incidence,” Radio Sci. 17, 545–557 (1982).
[CrossRef]

Cousins, A. K.

Coutaz, J. L.

Craig, M. S.

L. C. Botten, M. S. Craig, R. C. McPhedran, “Complex zeros of analytic functions,” Comput. Phys. Commun. 29, 245–259 (1983).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[CrossRef]

Cruddace, R. G.

Damerell, A. R.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Danson, C. N.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Decker, D.

Depine, R. A.

R. A. Depine, C. I. Valencia, “Diffraction from corrugated dielectric gratings: general case of oblique incidence,” J. Mod. Opt. 39, 2089–2112 (1992).
[CrossRef]

R. A. Depine, “Perfectly conducting diffraction grating formalisms extended to good conductors via the surface impedance boundary condition,” Appl. Opt. 26, 2348–2354 (1987).
[CrossRef] [PubMed]

R. A. Depine, J. M. Simon, “Diffraction grating efficiencies: an exact differential algorithm valid for high conductivities,” Opt. Acta 30, 1273–1286 (1983).
[CrossRef]

DeSandre, L. F.

Ditmire, T.

Edwards, C. B.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Elson, J. M.

Enger, R. C.

Erko, A.

A. Erko, V. Martynov, D. Roshchoupkin, A. Yuakshin, B. Vidal, P. Vincent, M. Brunel, “Multilayer diffraction grating properties,” J. Phys. (Paris) III 4, 1649–1658 (1994).

V. Martynov, B. Vidal, P. Vincent, M. Brunel, D. V. Roschupkin, Y. Agafonov, A. Erko, A. Yuakshin, “Comparison of modal and differential methods for multilayer gratings,” Nucl. Instrum. Methods A 339, 617–625 (1994).
[CrossRef]

Erko, A. I.

A. I. Erko, B. Vidal, P. Vincent, Y. A. Agafonov, V. V. Martynov, D. V. Roschupkin, M. Brunel, “Multilayer gratings efficiency—numerical and physical experiments,” Nucl. Instrum. Methods A 333, 599–606 (1993).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond to femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Ferray, M.

M. Ferray, L. A. Lompré, O. Gobert, A. L’Huilleir, G. Mainfray, C. Manus, A. Sanchéz, “Multiterawatt picosecond Nd–glass laser system at 1053 nm,” Opt. Commun. 75, 278–282 (1990).
[CrossRef]

Fork, R. L.

Fox, J. R.

J. R. Andrewartha, J. R. Fox, I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Acta 26, 69–89 (1979).
[CrossRef]

Garvin, H. L.

H. L. Garvin, A. Au, M. L. Minden, “Ion-etched gratings for laser applications,” in Periodic Structures, Gratings, Moire Patterns, and Diffraction Phenomena I, C. H. Chi, ed., Proc. SPIE240, 63–68 (1981).
[CrossRef]

Gaylord, T. K.

Gobert, O.

M. Ferray, L. A. Lompré, O. Gobert, A. L’Huilleir, G. Mainfray, C. Manus, A. Sanchéz, “Multiterawatt picosecond Nd–glass laser system at 1053 nm,” Opt. Commun. 75, 278–282 (1990).
[CrossRef]

Gordon, J. P.

Gottschalk, S. C.

Hancock, S.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Harter, D.

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1955).

Herman, S.

B. C. Stuart, S. Herman, M. D. Perry, “Chirped-pulse amplification in Ti-sapphire beyond 1 mµ,” IEEE J. Quantum Electron. 31, 528–538 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond to femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1995).
[CrossRef]

Hermann, R.

Hirsch, J.

Hunter, W. R.

Hutchinson, M. R. H.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Hutley, M. C.

M. C. Hutley, “Interference diffraction gratings,” Sci. Prog. (London) 61, 301–321 (1972).

M. C. Hutley, Diffraction Gratings (Academic, New York, 1982).

Kane, S.

Key, M. H.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Knittl, Z.

Z. Knittl, Optics of Thin Films (Wiley, New York, 1976).

Knop, K.

Kong, J. A.

S. L. Chuang, J. A. Kong, “Wave scattering from a periodic dielectric surface for a general angle of incidence,” Radio Sci. 17, 545–557 (1982).
[CrossRef]

Korn, G.

Kozlowski, M. R.

M. R. Kozlowski, R. Chow, I. M. Thomas, “Optical coatings for high power lasers,” in CRC Handbook of Laser Science and Technology Supplement 2, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), pp. 767–812.

L’Huilleir, A.

M. Ferray, L. A. Lompré, O. Gobert, A. L’Huilleir, G. Mainfray, C. Manus, A. Sanchéz, “Multiterawatt picosecond Nd–glass laser system at 1053 nm,” Opt. Commun. 75, 278–282 (1990).
[CrossRef]

Leskiw, D. M.

Li, L.

Lindau, S.

S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta 29, 1371–1381 (1982).
[CrossRef]

Lompré, L. A.

M. Ferray, L. A. Lompré, O. Gobert, A. L’Huilleir, G. Mainfray, C. Manus, A. Sanchéz, “Multiterawatt picosecond Nd–glass laser system at 1053 nm,” Opt. Commun. 75, 278–282 (1990).
[CrossRef]

Luan, S.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Macleod, A.

A. Macleod, Thin Film Optical Filters (Hilger, Bristol, UK, 1986).

Magnusson, R.

Mahadeo, R. r.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Maine, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–402 (1988).
[CrossRef]

Mainfray, G.

M. Ferray, L. A. Lompré, O. Gobert, A. L’Huilleir, G. Mainfray, C. Manus, A. Sanchéz, “Multiterawatt picosecond Nd–glass laser system at 1053 nm,” Opt. Commun. 75, 278–282 (1990).
[CrossRef]

Malek, C. K.

H. Berrouane, J. M. Andre, R. Barchewitz, T. Moreno, A. Sammar, C. K. Malek, B. Pardo, R. Rivoira, “Experimental and theoretical performances of an etched lamellar multilayer grating in the 1 keV region,” Nucl. Instrum. Methods A 312, 521–530 (1992).
[CrossRef]

Manus, C.

M. Ferray, L. A. Lompré, O. Gobert, A. L’Huilleir, G. Mainfray, C. Manus, A. Sanchéz, “Multiterawatt picosecond Nd–glass laser system at 1053 nm,” Opt. Commun. 75, 278–282 (1990).
[CrossRef]

Maradudin, A.

A. Wirgin, A. Maradudin, “Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light,” Phys. Rev. B 31, 5573–5576 (1985).
[CrossRef]

Martinez, O. E.

O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. QE-23, 59–64 (1987).
[CrossRef]

O. E. Martinez, J. P. Gordon, R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1, 1003–1006 (1984).
[CrossRef]

Martynov, V.

V. Martynov, B. Vidal, P. Vincent, M. Brunel, D. V. Roschupkin, Y. Agafonov, A. Erko, A. Yuakshin, “Comparison of modal and differential methods for multilayer gratings,” Nucl. Instrum. Methods A 339, 617–625 (1994).
[CrossRef]

A. Erko, V. Martynov, D. Roshchoupkin, A. Yuakshin, B. Vidal, P. Vincent, M. Brunel, “Multilayer diffraction grating properties,” J. Phys. (Paris) III 4, 1649–1658 (1994).

Martynov, V. V.

A. I. Erko, B. Vidal, P. Vincent, Y. A. Agafonov, V. V. Martynov, D. V. Roschupkin, M. Brunel, “Multilayer gratings efficiency—numerical and physical experiments,” Nucl. Instrum. Methods A 333, 599–606 (1993).
[CrossRef]

Mashev, L.

L. Mashev, E. Popov, “Anomalies of metallic diffraction gratings,” J. Opt. Soc. Am. A 6, 1561–1567 (1989).
[CrossRef]

L. Mashev, E. Popov, “Diffraction efficiency anomalies of multicoated dielectric gratings,” Opt. Commun. 51, 131–136 (1984).
[CrossRef]

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
[CrossRef]

Maystre, D.

McPhedran, R. C.

L. C. Botten, M. S. Craig, R. C. McPhedran, “Complex zeros of analytic functions,” Comput. Phys. Commun. 29, 245–259 (1983).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[CrossRef]

Mei, K. K.

Mercer, I. P.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Minden, M. L.

H. L. Garvin, A. Au, M. L. Minden, “Ion-etched gratings for laser applications,” in Periodic Structures, Gratings, Moire Patterns, and Diffraction Phenomena I, C. H. Chi, ed., Proc. SPIE240, 63–68 (1981).
[CrossRef]

Moharam, M. G.

Montiel, F.

M. Nevière, F. Montiel, “Deep gratings: a combination of the differential theory and the multiple reflection series,” Opt. Commun. 108, 1–7 (1994).
[CrossRef]

Moreno, T.

H. Berrouane, J. M. Andre, R. Barchewitz, T. Moreno, A. Sammar, C. K. Malek, B. Pardo, R. Rivoira, “Experimental and theoretical performances of an etched lamellar multilayer grating in the 1 keV region,” Nucl. Instrum. Methods A 312, 521–530 (1992).
[CrossRef]

Mourou, G.

M. D. Perry, G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

J. V. Rudd, G. Korn, S. Kane, J. Squier, G. Mourou, P. Bado, “Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti-Al2O3 regenerative amplifier,” Opt. Lett. 18, 2044–2046 (1993).
[CrossRef]

M. Pessot, J. Squier, G. Mourou, D. Harter, “Chirped-pulse amplification of 100-fsec pulses,” Opt. Lett. 14, 797–799 (1989).
[CrossRef] [PubMed]

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–402 (1988).
[CrossRef]

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Muray, J. J.

I. Brodie, J. J. Muray, The Physics of Micro/Nanofabrication (Plenum, New York, 1992).

Neureuther, A. R.

A. R. Neureuther, W. G. Oldham, “Resist modeling and profile simulation,” Solid State Technol. 28, 139–144 (1985).

Nevière, M.

M. Nevière, F. Montiel, “Deep gratings: a combination of the differential theory and the multiple reflection series,” Opt. Commun. 108, 1–7 (1994).
[CrossRef]

M. Nevière, E. Popov, “Analysis of dielectric gratings of arbitrary profiles and thicknesses: comment,” J. Opt. Soc. Am. A 9, 2095–2096 (1992).
[CrossRef]

D. Maystre, M. Nevière, M. Renisch, J. L. Coutaz, “Integral theory for metallic gratings in nonlinear optics and comparison with experimental results on second-harmonic generation,” J. Opt. Soc. Am. B 5, 338–351 (1988).
[CrossRef]

M. Nevière, P. Vincent, R. Petit, “Theory of conducting gratings and their applications to optics,” Nouv. Rev. Opt. 2, 65–77 (1974).
[CrossRef]

D. Maystre, M. Nevière, R. Petit, “Experimental verifications and applications of the theory,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, New York, 1980), pp. 159–225.

Nieto Vesperinas, M.

M. Nieto Vesperinas, J. M. Soto Crespo, “Light diffracted intensities from very deep gratings,” Phys. Rev. B 38, 7250–7259 (1988).
[CrossRef]

Norreys, P.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Oldham, W. G.

A. R. Neureuther, W. G. Oldham, “Resist modeling and profile simulation,” Solid State Technol. 28, 139–144 (1985).

Pai, D. M.

Pardo, B.

H. Berrouane, J. M. Andre, R. Barchewitz, T. Moreno, A. Sammar, C. K. Malek, B. Pardo, R. Rivoira, “Experimental and theoretical performances of an etched lamellar multilayer grating in the 1 keV region,” Nucl. Instrum. Methods A 312, 521–530 (1992).
[CrossRef]

Patterson, F. G.

Pepler, D. A.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Perry, M. D.

J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, “Universal grating design for pulse stretching and compression in the 800–1100-nm range,” Opt. Lett. 21, 540–542 (1996).
[CrossRef] [PubMed]

B. C. Stuart, S. Herman, M. D. Perry, “Chirped-pulse amplification in Ti-sapphire beyond 1 mµ,” IEEE J. Quantum Electron. 31, 528–538 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond to femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1995).
[CrossRef]

R. Boyd, J. Britten, D. Decker, B. W. Shore, B. Stuart, M. D. Perry, L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt. 34, 1697–1706 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, E. Shults, L. Li, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995).
[CrossRef] [PubMed]

M. D. Perry, G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

T. Ditmire, M. D. Perry, “Terawatt Cr-LiSrAlF6 laser system,” Opt. Lett. 18, 426–428 (1993).
[CrossRef] [PubMed]

M. D. Perry, F. G. Patterson, J. Weston, “Spectral shaping in chirped-pulse amplification,” Opt. Lett. 15, 381–383 (1990).
[CrossRef] [PubMed]

Pessot, M.

M. Pessot, J. Squier, G. Mourou, D. Harter, “Chirped-pulse amplification of 100-fsec pulses,” Opt. Lett. 14, 797–799 (1989).
[CrossRef] [PubMed]

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–402 (1988).
[CrossRef]

Petit, R.

R. Petit, “Electromagnetic grating theories: limitations and successes,” Nouv. Rev. Opt. 3, 129–135 (1975).
[CrossRef]

M. Nevière, P. Vincent, R. Petit, “Theory of conducting gratings and their applications to optics,” Nouv. Rev. Opt. 2, 65–77 (1974).
[CrossRef]

D. Maystre, M. Nevière, R. Petit, “Experimental verifications and applications of the theory,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, New York, 1980), pp. 159–225.

Popov, E.

E. Popov, “Light diffraction by relief gratings: a macroscopic and microscopic view,” Prog. Opt. 31, 141–190 (1993).

M. Nevière, E. Popov, “Analysis of dielectric gratings of arbitrary profiles and thicknesses: comment,” J. Opt. Soc. Am. A 9, 2095–2096 (1992).
[CrossRef]

E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties of the Littrow mounting and energy flow distribution,” J. Mod. Opt. 37, 367–377 (1990).
[CrossRef]

L. Mashev, E. Popov, “Anomalies of metallic diffraction gratings,” J. Opt. Soc. Am. A 6, 1561–1567 (1989).
[CrossRef]

L. Mashev, E. Popov, “Diffraction efficiency anomalies of multicoated dielectric gratings,” Opt. Commun. 51, 131–136 (1984).
[CrossRef]

Popov, E. K.

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

Powell, R. A.

R. A. Powell, Dry Etching for Microelectronics (Elsevier, New York, 1984).

Renisch, M.

Rife, J. C.

Rivoira, R.

H. Berrouane, J. M. Andre, R. Barchewitz, T. Moreno, A. Sammar, C. K. Malek, B. Pardo, R. Rivoira, “Experimental and theoretical performances of an etched lamellar multilayer grating in the 1 keV region,” Nucl. Instrum. Methods A 312, 521–530 (1992).
[CrossRef]

Rodkiss, D. A.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Roschupkin, D. V.

V. Martynov, B. Vidal, P. Vincent, M. Brunel, D. V. Roschupkin, Y. Agafonov, A. Erko, A. Yuakshin, “Comparison of modal and differential methods for multilayer gratings,” Nucl. Instrum. Methods A 339, 617–625 (1994).
[CrossRef]

A. I. Erko, B. Vidal, P. Vincent, Y. A. Agafonov, V. V. Martynov, D. V. Roschupkin, M. Brunel, “Multilayer gratings efficiency—numerical and physical experiments,” Nucl. Instrum. Methods A 333, 599–606 (1993).
[CrossRef]

Roshchoupkin, D.

A. Erko, V. Martynov, D. Roshchoupkin, A. Yuakshin, B. Vidal, P. Vincent, M. Brunel, “Multilayer diffraction grating properties,” J. Phys. (Paris) III 4, 1649–1658 (1994).

Ross, I. N.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond to femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Rudd, J. V.

Rudolph, W.

W. Rudolph, B. Wilhelmi, Light Pulse Compression (Harwood, London, 1989).

Sabeva, M. L.

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

Sammar, A.

H. Berrouane, J. M. Andre, R. Barchewitz, T. Moreno, A. Sammar, C. K. Malek, B. Pardo, R. Rivoira, “Experimental and theoretical performances of an etched lamellar multilayer grating in the 1 keV region,” Nucl. Instrum. Methods A 312, 521–530 (1992).
[CrossRef]

Sanchéz, A.

M. Ferray, L. A. Lompré, O. Gobert, A. L’Huilleir, G. Mainfray, C. Manus, A. Sanchéz, “Multiterawatt picosecond Nd–glass laser system at 1053 nm,” Opt. Commun. 75, 278–282 (1990).
[CrossRef]

Schwering, F.

Seaton, C. T.

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. SPIE835, 72–82 (1988).
[CrossRef]

Shah, V.

Shannon, C.

Shore, B. W.

Shults, E.

Simon, J. M.

R. A. Depine, J. M. Simon, “Diffraction grating efficiencies: an exact differential algorithm valid for high conductivities,” Opt. Acta 30, 1273–1286 (1983).
[CrossRef]

Sincerbox, G. T.

Smith, M. A.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Soto Crespo, J. M.

M. Nieto Vesperinas, J. M. Soto Crespo, “Light diffracted intensities from very deep gratings,” Phys. Rev. B 38, 7250–7259 (1988).
[CrossRef]

Squier, J.

Stanford, J. L.

Stegeman, G. I.

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. SPIE835, 72–82 (1988).
[CrossRef]

Strickland, D.

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–402 (1988).
[CrossRef]

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Stuart, B.

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond to femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1995).
[CrossRef]

B. C. Stuart, S. Herman, M. D. Perry, “Chirped-pulse amplification in Ti-sapphire beyond 1 mµ,” IEEE J. Quantum Electron. 31, 528–538 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Su, S. F.

Svakhin, A. S.

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).

Sychugov, V. A.

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).

Taday, P.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Tamir, T.

Thelen, A.

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989).

Thomas, I. M.

M. R. Kozlowski, R. Chow, I. M. Thomas, “Optical coatings for high power lasers,” in CRC Handbook of Laser Science and Technology Supplement 2, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), pp. 767–812.

Tikhomirov, A. E.

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).

Tomita, M.

K. Yasuura, M. Tomita, “Numerical analysis of plane wave scattering from dielectric gratings,” Trans. Inst. Electr. Commun. Eng. Jpn. J61-B, 662–669 (1978).

Tonchev, S.

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
[CrossRef]

Toner, W. T.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

Tremain, D. E.

Tsonev, L.

E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties of the Littrow mounting and energy flow distribution,” J. Mod. Opt. 37, 367–377 (1990).
[CrossRef]

Tsonev, L. V.

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

Valencia, C. I.

R. A. Depine, C. I. Valencia, “Diffraction from corrugated dielectric gratings: general case of oblique incidence,” J. Mod. Opt. 39, 2089–2112 (1992).
[CrossRef]

Vidal, B.

A. Erko, V. Martynov, D. Roshchoupkin, A. Yuakshin, B. Vidal, P. Vincent, M. Brunel, “Multilayer diffraction grating properties,” J. Phys. (Paris) III 4, 1649–1658 (1994).

V. Martynov, B. Vidal, P. Vincent, M. Brunel, D. V. Roschupkin, Y. Agafonov, A. Erko, A. Yuakshin, “Comparison of modal and differential methods for multilayer gratings,” Nucl. Instrum. Methods A 339, 617–625 (1994).
[CrossRef]

A. I. Erko, B. Vidal, P. Vincent, Y. A. Agafonov, V. V. Martynov, D. V. Roschupkin, M. Brunel, “Multilayer gratings efficiency—numerical and physical experiments,” Nucl. Instrum. Methods A 333, 599–606 (1993).
[CrossRef]

Vincent, P.

A. Erko, V. Martynov, D. Roshchoupkin, A. Yuakshin, B. Vidal, P. Vincent, M. Brunel, “Multilayer diffraction grating properties,” J. Phys. (Paris) III 4, 1649–1658 (1994).

V. Martynov, B. Vidal, P. Vincent, M. Brunel, D. V. Roschupkin, Y. Agafonov, A. Erko, A. Yuakshin, “Comparison of modal and differential methods for multilayer gratings,” Nucl. Instrum. Methods A 339, 617–625 (1994).
[CrossRef]

A. I. Erko, B. Vidal, P. Vincent, Y. A. Agafonov, V. V. Martynov, D. V. Roschupkin, M. Brunel, “Multilayer gratings efficiency—numerical and physical experiments,” Nucl. Instrum. Methods A 333, 599–606 (1993).
[CrossRef]

M. Nevière, P. Vincent, R. Petit, “Theory of conducting gratings and their applications to optics,” Nouv. Rev. Opt. 2, 65–77 (1974).
[CrossRef]

Werlich, H.

Weston, J.

Whitman, G. M.

Wilhelmi, B.

W. Rudolph, B. Wilhelmi, Light Pulse Compression (Harwood, London, 1989).

Wilson, I. J.

J. R. Andrewartha, J. R. Fox, I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Acta 26, 69–89 (1979).
[CrossRef]

Winstone, T. B.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Wirgin, A.

A. Wirgin, A. Maradudin, “Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light,” Phys. Rev. B 31, 5573–5576 (1985).
[CrossRef]

Wogmore, K. W.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Wyatt, R. W. W.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Xu, M.

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. SPIE835, 72–82 (1988).
[CrossRef]

Yasuura, K.

K. Yasuura, M. Tomita, “Numerical analysis of plane wave scattering from dielectric gratings,” Trans. Inst. Electr. Commun. Eng. Jpn. J61-B, 662–669 (1978).

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

Yokomori, K.

Yuakshin, A.

A. Erko, V. Martynov, D. Roshchoupkin, A. Yuakshin, B. Vidal, P. Vincent, M. Brunel, “Multilayer diffraction grating properties,” J. Phys. (Paris) III 4, 1649–1658 (1994).

V. Martynov, B. Vidal, P. Vincent, M. Brunel, D. V. Roschupkin, Y. Agafonov, A. Erko, A. Yuakshin, “Comparison of modal and differential methods for multilayer gratings,” Nucl. Instrum. Methods A 339, 617–625 (1994).
[CrossRef]

Yung, B.

Zhou, F.

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Appl. Opt. (10)

K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” Appl. Opt. 19, 282–288 (1978).

M. Breidne, D. Maystre, “Equivalence of ruled, holographic, and lamellar gratings in constant deviation mountings,” Appl. Opt. 19, 1812–1821 (1980).
[CrossRef] [PubMed]

R. C. Enger, S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983).
[CrossRef] [PubMed]

K. Yokomori, “Dielectric surface relief gratings with high diffraction efficiency,” Appl. Opt. 23, 2303–2310 (1984).
[CrossRef]

M. G. Moharam, T. K. Gaylord, G. T. Sincerbox, H. Werlich, B. Yung, “Diffraction characteristics of photoresist surface-relief gratings,” Appl. Opt. 23, 3214–3220 (1984).
[CrossRef] [PubMed]

R. Hermann, “Quarterwave layers: simulation by three thin layers of two materials,” Appl. Opt. 24, 1183–1188 (1985).
[CrossRef]

R. A. Depine, “Perfectly conducting diffraction grating formalisms extended to good conductors via the surface impedance boundary condition,” Appl. Opt. 26, 2348–2354 (1987).
[CrossRef] [PubMed]

R. Boyd, J. Britten, D. Decker, B. W. Shore, B. Stuart, M. D. Perry, L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt. 34, 1697–1706 (1995).
[CrossRef] [PubMed]

A. K. Cousins, S. C. Gottschalk, “Application of the impedance formalism to diffraction gratings with multiple coating layers,” Appl. Opt. 29, 4268–4271 (1990).
[CrossRef] [PubMed]

J. C. Rife, W. R. Hunter, T. W. Barbee, R. G. Cruddace, “Multilayer-coated blazed grating performance in the soft x-ray region,” Appl. Opt. 28, 2984–2986 (1989).
[CrossRef] [PubMed]

Appl. Phys. (1)

R. Alferness, “Analysis of optical propagation in thick holographic gratings,” Appl. Phys. 7, 29–33 (1975).
[CrossRef]

Appl. Phys. A (1)

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
[CrossRef]

Comput. Phys. Commun. (1)

L. C. Botten, M. S. Craig, R. C. McPhedran, “Complex zeros of analytic functions,” Comput. Phys. Commun. 29, 245–259 (1983).
[CrossRef]

IEEE J. Quantum Electron. (4)

O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. QE-23, 59–64 (1987).
[CrossRef]

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–402 (1988).
[CrossRef]

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

B. C. Stuart, S. Herman, M. D. Perry, “Chirped-pulse amplification in Ti-sapphire beyond 1 mµ,” IEEE J. Quantum Electron. 31, 528–538 (1995).
[CrossRef]

J. Inst. Electr. Eng. Part 3 (1)

H. G. Booker, “The elements of wave propagation using the impedance concept,” J. Inst. Electr. Eng. Part 3 94, 171–184 (1947).

J. Mod. Opt. (3)

E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties of the Littrow mounting and energy flow distribution,” J. Mod. Opt. 37, 367–377 (1990).
[CrossRef]

R. A. Depine, C. I. Valencia, “Diffraction from corrugated dielectric gratings: general case of oblique incidence,” J. Mod. Opt. 39, 2089–2112 (1992).
[CrossRef]

L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
[CrossRef]

J. Opt. Soc. Am. (12)

J. M. Elson, “Diffraction and diffuse scattering from dielectric multilayers,” J. Opt. Soc. Am. 69, 48–54 (1979).
[CrossRef]

S. F. Su, T. K. Gaylord, “Calculation of arbitrary-order diffraction efficiencies of thick gratings with arbitrary grating shape,” J. Opt. Soc. Am. 65, 59–64 (1975).
[CrossRef]

R. Magnusson, T. K. Gaylord, “Analysis of multiwave diffraction of thick gratings,” J. Opt. Soc. Am. 67, 1165–1170 (1977).
[CrossRef]

D. Maystre, “A new general integral theory for dielectric coated gratings,” J. Opt. Soc. Am. 68, 490–495 (1978).
[CrossRef]

D. E. Tremain, K. K. Mei, “Application of the unimoment method to scattering from periodic dielectric structures,” J. Opt. Soc. Am. 68, 775–783 (1978).
[CrossRef]

K. C. Chang, V. Shah, T. Tamir, “Scattering and guiding of waves by dielectric gratings with arbitrary profiles,” J. Opt. Soc. Am. 70, 804–813 (1980).
[CrossRef]

G. M. Whitman, D. M. Leskiw, F. Schwering, “Rigorous theory of scattering by perfectly conducting periodic surfaces with trapezoidal height profile. TE and TM polarization,” J. Opt. Soc. Am. 70, 1495–1503 (1980).
[CrossRef]

M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
[CrossRef]

M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
[CrossRef]

M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of grating diffraction—E-mode polarization and losses,” J. Opt. Soc. Am. 73, 451–455 (1983).
[CrossRef]

M. G. Moharam, T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983).
[CrossRef]

R. C. Enger, S. K. Case, “High-frequency holographic transmission gratings in photoresist,” J. Opt. Soc. Am. 73, 1113–1118 (1983).
[CrossRef]

J. Opt. Soc. Am. A (10)

M. Nevière, E. Popov, “Analysis of dielectric gratings of arbitrary profiles and thicknesses: comment,” J. Opt. Soc. Am. A 9, 2095–2096 (1992).
[CrossRef]

L. Li, “Multilayer-coated diffraction gratings: differential method of Chandezon et al. revisited,” J. Opt. Soc. Am. A 11, 2816–2828 (1994).
[CrossRef]

L. Li, “Bremmer series, R-matrix propagation algorithm, and numerical modeling of diffraction gratings,” J. Opt. Soc. Am. A 11, 2829–2836 (1994).
[CrossRef]

O. E. Martinez, J. P. Gordon, R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1, 1003–1006 (1984).
[CrossRef]

M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
[CrossRef]

J. M. Elson, L. F. DeSandre, J. L. Stanford, “Analysis of anomalous resonance effects in multilayer-overcoated, low-efficiency gratings,” J. Opt. Soc. Am. A 5, 74–88 (1988).
[CrossRef]

L. Mashev, E. Popov, “Anomalies of metallic diffraction gratings,” J. Opt. Soc. Am. A 6, 1561–1567 (1989).
[CrossRef]

L. F. DeSandre, J. M. Elson, “Extinction-theorem analysis of diffraction anomalies in overcoated gratings,” J. Opt. Soc. Am. A 8, 763–777 (1991).
[CrossRef]

D. M. Pai, K. A. Awada, “Analysis of dielectric gratings of arbitrary profiles and thicknesses,” J. Opt. Soc. Am. A 9, 755–762 (1991).
[CrossRef]

L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. (Paris) III (1)

A. Erko, V. Martynov, D. Roshchoupkin, A. Yuakshin, B. Vidal, P. Vincent, M. Brunel, “Multilayer diffraction grating properties,” J. Phys. (Paris) III 4, 1649–1658 (1994).

Nouv. Rev. Opt. (2)

M. Nevière, P. Vincent, R. Petit, “Theory of conducting gratings and their applications to optics,” Nouv. Rev. Opt. 2, 65–77 (1974).
[CrossRef]

R. Petit, “Electromagnetic grating theories: limitations and successes,” Nouv. Rev. Opt. 3, 129–135 (1975).
[CrossRef]

Nucl. Instrum. Methods A (3)

H. Berrouane, J. M. Andre, R. Barchewitz, T. Moreno, A. Sammar, C. K. Malek, B. Pardo, R. Rivoira, “Experimental and theoretical performances of an etched lamellar multilayer grating in the 1 keV region,” Nucl. Instrum. Methods A 312, 521–530 (1992).
[CrossRef]

A. I. Erko, B. Vidal, P. Vincent, Y. A. Agafonov, V. V. Martynov, D. V. Roschupkin, M. Brunel, “Multilayer gratings efficiency—numerical and physical experiments,” Nucl. Instrum. Methods A 333, 599–606 (1993).
[CrossRef]

V. Martynov, B. Vidal, P. Vincent, M. Brunel, D. V. Roschupkin, Y. Agafonov, A. Erko, A. Yuakshin, “Comparison of modal and differential methods for multilayer gratings,” Nucl. Instrum. Methods A 339, 617–625 (1994).
[CrossRef]

Opt. Acta (6)

S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta 29, 1371–1381 (1982).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981).
[CrossRef]

J. R. Andrewartha, J. R. Fox, I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Acta 26, 69–89 (1979).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[CrossRef]

R. A. Depine, J. M. Simon, “Diffraction grating efficiencies: an exact differential algorithm valid for high conductivities,” Opt. Acta 30, 1273–1286 (1983).
[CrossRef]

Opt. Commun. (5)

M. Nevière, F. Montiel, “Deep gratings: a combination of the differential theory and the multiple reflection series,” Opt. Commun. 108, 1–7 (1994).
[CrossRef]

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

L. Mashev, E. Popov, “Diffraction efficiency anomalies of multicoated dielectric gratings,” Opt. Commun. 51, 131–136 (1984).
[CrossRef]

M. Ferray, L. A. Lompré, O. Gobert, A. L’Huilleir, G. Mainfray, C. Manus, A. Sanchéz, “Multiterawatt picosecond Nd–glass laser system at 1053 nm,” Opt. Commun. 75, 278–282 (1990).
[CrossRef]

C. N. Danson, L. J. Barzanti, Z. Chang, A. R. Damerell, C. B. Edwards, S. Hancock, M. R. H. Hutchinson, M. H. Key, S. Luan, R. r. Mahadeo, I. P. Mercer, P. Norreys, D. A. Pepler, D. A. Rodkiss, I. N. Ross, M. A. Smith, P. Taday, W. T. Toner, K. W. Wogmore, T. B. Winstone, R. W. W. Wyatt, F. Zhou, “High contrast multi-terawatt pulse generation using chirped pulse amplification on the Vulcan laser facility,” Opt. Commun. 108, 392–397 (1992).

Opt. Eng. (2)

J. A. Britten, R. D. Boyd, B. W. Shore, “In situ end-point detection during development of submicrometer grating structures in photoresist,” Opt. Eng. 34, 474–479 (1995).
[CrossRef]

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. B (3)

M. Nieto Vesperinas, J. M. Soto Crespo, “Light diffracted intensities from very deep gratings,” Phys. Rev. B 38, 7250–7259 (1988).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond to femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1995).
[CrossRef]

A. Wirgin, A. Maradudin, “Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light,” Phys. Rev. B 31, 5573–5576 (1985).
[CrossRef]

Phys. Rev. Lett. (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Prog. Opt. (1)

E. Popov, “Light diffraction by relief gratings: a macroscopic and microscopic view,” Prog. Opt. 31, 141–190 (1993).

Quantum Electron. (1)

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Diffraction gratings with high optical strength for laser resonators,” Quantum Electron. 24, 233–235 (1994).
[CrossRef]

Radio Sci. (1)

S. L. Chuang, J. A. Kong, “Wave scattering from a periodic dielectric surface for a general angle of incidence,” Radio Sci. 17, 545–557 (1982).
[CrossRef]

Sci. Prog. (London) (1)

M. C. Hutley, “Interference diffraction gratings,” Sci. Prog. (London) 61, 301–321 (1972).

Science (1)

M. D. Perry, G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

Solid State Technol. (1)

A. R. Neureuther, W. G. Oldham, “Resist modeling and profile simulation,” Solid State Technol. 28, 139–144 (1985).

Sov. Phys. Tech. Phys. (1)

A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).

Trans. Inst. Electr. Commun. Eng. Jpn. (1)

K. Yasuura, M. Tomita, “Numerical analysis of plane wave scattering from dielectric gratings,” Trans. Inst. Electr. Commun. Eng. Jpn. J61-B, 662–669 (1978).

Other (18)

I. Brodie, J. J. Muray, The Physics of Micro/Nanofabrication (Plenum, New York, 1992).

H. L. Garvin, A. Au, M. L. Minden, “Ion-etched gratings for laser applications,” in Periodic Structures, Gratings, Moire Patterns, and Diffraction Phenomena I, C. H. Chi, ed., Proc. SPIE240, 63–68 (1981).
[CrossRef]

R. A. Powell, Dry Etching for Microelectronics (Elsevier, New York, 1984).

L. Li, M. Xu, G. I. Stegeman, C. T. Seaton, “Fabrication of photoresist masks for submicrometer surface relief gratings,” in Integrated Optical Circuit Engineering V, M. A. Mentzer, ed., Proc. SPIE835, 72–82 (1988).
[CrossRef]

D. M. Manos, D. L. Flamm, eds., Plasma Etching, An Introduction (Academic, San Diego, Calif., 1989).

J. J. Armstrong, “Holographic generation of ultra-high-efficiency large-aperture transmission diffraction gratings,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1993).

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1955).

P. Baumeister, “Interference and optical interference coatings,” in Applied Optics and Optical Engineering, R. Kingslake, ed. (Academic, New York, 1965), Vol. 1, pp. 285–323.

Z. Knittl, Optics of Thin Films (Wiley, New York, 1976).

A. Macleod, Thin Film Optical Filters (Hilger, Bristol, UK, 1986).

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989).

W. Rudolph, B. Wilhelmi, Light Pulse Compression (Harwood, London, 1989).

D. Maystre, M. Nevière, R. Petit, “Experimental verifications and applications of the theory,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer, New York, 1980), pp. 159–225.

M. Cadilhac, “Some mathematical aspects of the grating theory,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), pp. 101–156.

R. Petit, ed., Electromagnetic Theory of Gratings (Springer, Berlin, 1980).

M. C. Hutley, Diffraction Gratings (Academic, New York, 1982).

M. R. Kozlowski, R. Chow, I. M. Thomas, “Optical coatings for high power lasers,” in CRC Handbook of Laser Science and Technology Supplement 2, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), pp. 767–812.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Multilayer dielectric designs of high-index (H) and low-index (L) layers, showing relative locations of substrate, multilayers, and groove corrugations (G). (a) Overcoated grating; dielectric layers effectively form a volume grating. (b) Undercoated grating; layers form a high-reflectivity (HR) stack under the corrugations.

Fig. 2
Fig. 2

Schematic diagram of our holographic exposure layout, showing cw laser, beam splitter (s), turning mirrors (m), apertures (a), collimating lenses (L), and photoresist-coated substrate (p).

Fig. 3
Fig. 3

Schematic diagram of arrangements that will produce low diffraction efficiency in reflection: (a) low-efficiency transmission grating over mirror, (b) high-efficiency transmission grating over mirror.

Fig. 4
Fig. 4

Diffraction efficiency (order-1 in transmission) for a lamellar-profile grating etched into silica (refractive index 1.47), for a grating whose spacing is equal to 1 wavelength and that is used at the Littrow angle (30°) for TE polarization. The plot shows the dependence of this transmission efficiency as a function of groove depth (expressed in wavelengths) and duty cycle (the ridge thickness in fractions of a groove period).

Fig. 5
Fig. 5

Same as Fig. 4, but for TM polarization.

Fig. 6
Fig. 6

Diffraction efficiency (order-1 in transmission) for a lamellar grating as a function of relative depth (in wavelengths) and refractive index. The groove spacing is 1 wavelength, the angle of incidence is the Littrow angle (30°), the groove duty cycle is 0.3, and the light is TE polarized.

Fig. 7
Fig. 7

Efficiency (order-1 in reflection) versus depth of groove (in micrometers) and top-layer thickness below the groove (in micrometers) for a quarter-wave stack. The grating grooves are lamellar, with 1480 grooves/mm (groove period 677 nm), and the duty cycle is 0.3. The radiation is the 1053-nm wavelength at the Littrow angle (51.2°), with TE polarization. The high-index material is hafnia (index 1.9), and the low-index material is silica (index 1.46). The quarter-waves are defined for the use wavelength and angle. (a) High-index surface layer over (HL)7 stack, (b) low-index surface layer over (HL)7H stack.

Fig. 8
Fig. 8

Efficiency versus depth (in micrometers) and duty cycle for a quarter-wave HR stack, with grooves etched completely through the top layer. The grating grooves are lamellar, with 1480 grooves/mm (groove period 677 nm), and the duty cycle is 0.3. The radiation is the 1053-nm wavelength at the Littrow angle (51.2°), with TE polarization. The high-index material is hafnia (index 1.9), and the low-index material is silica (index 1.46). The quarter-waves are defined for the use wavelength and angle. (a) High-index surface layer over (HL)7 stack, (b) low-index surface layer over (HL)7H stack.

Fig. 9
Fig. 9

Efficiency in transmission versus depth (in micrometers) and duty cycle for the grating layer (without underlying multilayer stack) of Fig. 8. (a) High index, (b) low index.

Fig. 10
Fig. 10

Theoretical reflectance for quarter-wave stack (HL)7H. The thick curves are for TE polarization (s polarization), and the thin curves are for TM polarization (p polarization). The computations assume constant refractive indices, n=1.91 for H and n=1.41 for L. (a) At the use angle of 52° under air; the vertical arrow marks the use wavelength 1053 nm. (b) At the exposure angle of 17° under photoresist; the vertical arrow marks the exposure wavelength 413 nm.

Fig. 11
Fig. 11

Same as Fig. 10, but for the HLL stack (HLL)7H.

Fig. 12
Fig. 12

Calculated electric-field distribution in and above multilayer dielectric grating structures. (a) Quarter-wave stack with high-efficiency grating, showing field maxima at layer interfaces and at the corner of the grating ridge; (b) HLL stack with field maxima concentrated in the low-index layers and in the air space between the gratings.

Fig. 13
Fig. 13

Calculated efficiency (order-1 in reflection) versus groove depth (in nanometers) and trapezoid base width (in nanometers) for a trapezoidal-groove grating having 1480 grooves/mm, etched in hafnia atop a multilayer stack (HLL)10 of hafnia (H) and silica (L), when viewed at the Littrow angle (51.2°) for TE-polarized light of wavelength 1053 nm. The top layer, hafnia, is 350 nm thick (depth of 350 nm is etched through).

Fig. 14
Fig. 14

(a) SEM of a multilayer dielectric grating fabricated to the specifications of Fig. 13, showing near-trapezoidal profiles etched into hafnia; (b) idealized model used for computations. The light regions are low index (silica), and the dark regions are high index (hafnia). The diffraction efficiency of this grating was 95% (TE polarization 1.053 µm).

Fig. 15
Fig. 15

Calculated efficiency (order-1 in reflection) versus groove depth (in nanometers) and groove duty cycle for a lamellar-groove grating having 1480 grooves/mm, etched in silica atop a multilayer stack (HLL)10 of hafnia (H) and silica (L), when viewed at the Littrow angle for TE-polarized light of wavelength 1053 nm. The top layer, silica, is 800 nm thick (depth of 800 nm is etched through).

Fig. 16
Fig. 16

(a) SEM of a multilayer dielectric grating fabricated to the specifications of Fig. 15, showing lamellar profiles etched into silica; (b) idealized model used for computations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

nb sin θm=na sin θ+mλ/d
R=|[η(a)-η(b)]/[η(a)+η(b)]|2,
η(r)=n(r)Z0×cos θr1/cos θrforTEforTM .

Metrics