T. J. Abatzoglou, J. M. Mendel, G. A. Harada, “The constrained total least squares technique and its applications to harmonic superresolution,” IEEE Trans. Signal Process. 39, 1070–1087 (1991).

[CrossRef]

R. L. Barbour, H. L. Graber, R. Aronson, J. Lubowsky, “Imaging of subsurface regions of random media by remote sensing,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 192–203 (1991).

[CrossRef]

R. L. Barbour, H. L. Graber, J. Chang, S. Barbour, P. C. Koo, R. Aronson, “MR guided optical tomography: prospects and computation for a new imaging method,” in IEEE Computational Science Engineering Magazine, Winter1995, pp. 63–77.

Y. Wang, J. Chang, R. Aronson, R. Barbour, H. Graber, J. Lubowsky, “Imaging scattering media by diffusion tomography: an iterative perturbation approach,” in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE1641, 58–71 (1992).

[CrossRef]

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. H. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 87–120.

J. Chang, Y. Wang, R. Aronson, H. L. Graber, R. L. Barbour, “A layer-stripping approach for recovery of scattering media from time-resolved data,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 384–395 (1992).

[CrossRef]

H. L. Graber, R. L. Barbour, J. Chang, R. Aronson, “Identification of the functional form of nonlinear effects of localized finite absorption in a diffusing medium,” in Optical Tomography; Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 669–681 (1995).

[CrossRef]

S. R. Arridge, “The forward and inverse problems in time resolved infra-red imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 35–64.

X. Yang, T. K. Sarkar, E. Arvas, “A survey of conjugate gradient algorithms for solution of extreme eigen-problem of a symmetric matrix,” IEEE Trans. Acoust. Speech Signal Process. 37, 1550–1556 (1989).

[CrossRef]

W. Zhu, Y. Wang, Y. Deng, Y. Yao, R. Barbour, “Multiresolution regularized least squares image reconstruction based on wavelet in optical tomography,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 186–196 (1995).

[CrossRef]

Y. Wang, J. Chang, R. Aronson, R. Barbour, H. Graber, J. Lubowsky, “Imaging scattering media by diffusion tomography: an iterative perturbation approach,” in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE1641, 58–71 (1992).

[CrossRef]

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. H. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 87–120.

R. L. Barbour, H. L. Graber, J. Chang, S. Barbour, P. C. Koo, R. Aronson, “MR guided optical tomography: prospects and computation for a new imaging method,” in IEEE Computational Science Engineering Magazine, Winter1995, pp. 63–77.

J. Chang, Y. Wang, R. Aronson, H. L. Graber, R. L. Barbour, “A layer-stripping approach for recovery of scattering media from time-resolved data,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 384–395 (1992).

[CrossRef]

W. Zhu, Y. Wang, H. L. Graber, R. L. Barbour, J. Chang, “A regularized progressive expansion algorithm for recovery of scattering media from time-resolved data,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed. (Optical Society of America, Washington, D.C., 1994), pp. 211–216.

H. L. Graber, R. L. Barbour, J. Chang, R. Aronson, “Identification of the functional form of nonlinear effects of localized finite absorption in a diffusing medium,” in Optical Tomography; Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 669–681 (1995).

[CrossRef]

Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Simultaneous reconstruction of absorption and scattering distributions in turbid media using a Born iterative method,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 96–107 (1995).

[CrossRef]

Y. Q. Yao, Y. Wang, R. L. Barbour, H. L. Graber, J. W. Chang, “Scattering characteristics of photon density waves from an object in a spherically two-layer medium,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 291–303 (1995).

[CrossRef]

R. L. Barbour, H. L. Graber, R. Aronson, J. Lubowsky, “Imaging of subsurface regions of random media by remote sensing,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 192–203 (1991).

[CrossRef]

Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, J. H. Hu, R. L. Barbour, “Frequency domain optical tomography in human tissue,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 254–266 (1995).

[CrossRef]

W. Zhu, Y. Wang, Y. Yao, R. L. Barbour, “Wavelet based multigrid reconstruction algorithm for optical tomography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. Fujimoto, eds. (Optical Society of America, Washington, D.C., 1996), pp. 278–281.

R. L. Barbour, H. L. Graber, J. Chang, S. Barbour, P. C. Koo, R. Aronson, “MR guided optical tomography: prospects and computation for a new imaging method,” in IEEE Computational Science Engineering Magazine, Winter1995, pp. 63–77.

I. Shavitt, C. F. Bender, A. Pipano, R. P. Hosteny, “The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvector of very large symmetric matrices,” J. Comput. Phys. 11, 90–108 (1973).

[CrossRef]

N. K. Bose, H. C. Kim, H. M. Valenzuela, “Recursive total least squares algorithm for image reconstruction,” Multidimens. Syst. Signal Process. 4, 253–268 (1993).

H. Chen, T. K. Sarkar, S. A. Dianat, J. D. Brule, “Adaptive spectral estimation by the conjugate gradient method,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 272–284 (1986).

[CrossRef]

K. M. Case, P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, Mass., 1967), Chap. 8, pp. 194–231.

H. L. Graber, R. L. Barbour, J. Chang, R. Aronson, “Identification of the functional form of nonlinear effects of localized finite absorption in a diffusing medium,” in Optical Tomography; Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 669–681 (1995).

[CrossRef]

R. L. Barbour, H. L. Graber, J. Chang, S. Barbour, P. C. Koo, R. Aronson, “MR guided optical tomography: prospects and computation for a new imaging method,” in IEEE Computational Science Engineering Magazine, Winter1995, pp. 63–77.

Y. Wang, J. Chang, R. Aronson, R. Barbour, H. Graber, J. Lubowsky, “Imaging scattering media by diffusion tomography: an iterative perturbation approach,” in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE1641, 58–71 (1992).

[CrossRef]

J. Chang, Y. Wang, R. Aronson, H. L. Graber, R. L. Barbour, “A layer-stripping approach for recovery of scattering media from time-resolved data,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 384–395 (1992).

[CrossRef]

W. Zhu, Y. Wang, H. L. Graber, R. L. Barbour, J. Chang, “A regularized progressive expansion algorithm for recovery of scattering media from time-resolved data,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed. (Optical Society of America, Washington, D.C., 1994), pp. 211–216.

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. H. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 87–120.

Y. Q. Yao, Y. Wang, R. L. Barbour, H. L. Graber, J. W. Chang, “Scattering characteristics of photon density waves from an object in a spherically two-layer medium,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 291–303 (1995).

[CrossRef]

H. Chen, T. K. Sarkar, S. A. Dianat, J. D. Brule, “Adaptive spectral estimation by the conjugate gradient method,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 272–284 (1986).

[CrossRef]

C. E. Davila, “An efficient recursive total least squares algorithm for FIR adaptive filtering,” IEEE Trans. Signal Process. 42, 268–280 (1994).

[CrossRef]

W. Zhu, Y. Wang, Y. Deng, Y. Yao, R. Barbour, “Multiresolution regularized least squares image reconstruction based on wavelet in optical tomography,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 186–196 (1995).

[CrossRef]

H. Chen, T. K. Sarkar, S. A. Dianat, J. D. Brule, “Adaptive spectral estimation by the conjugate gradient method,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 272–284 (1986).

[CrossRef]

P. Li, S. W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Frequencies Freq. Control 40, 282–292 (1993).

P. Li, S. W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Frequencies Freq. Control 40, 282–292 (1993).

R. Fletcher, C. M. Reeves, “Function minimization by conjugate gradients,” Comput. J. 7, 149–154 (1964).

V. Z. Mesarović, N. P. Galatsanos, A. Katsaggelos, “Regularized constrained total least squares image restoration,” IEEE Trans. Image Process. 4, 1096–1108 (1995).

[CrossRef]
[PubMed]

G. H. Golub, “Some modified matrix eigenvalue problems,” SIAM Rev. 15, 318–334 (1973).

[CrossRef]

G. H. Golub, C. F. Van Loan, “An analysis of the total least squares problem,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.17, 883–893 (1980).

Y. Wang, J. Chang, R. Aronson, R. Barbour, H. Graber, J. Lubowsky, “Imaging scattering media by diffusion tomography: an iterative perturbation approach,” in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE1641, 58–71 (1992).

[CrossRef]

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. H. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 87–120.

R. L. Barbour, H. L. Graber, J. Chang, S. Barbour, P. C. Koo, R. Aronson, “MR guided optical tomography: prospects and computation for a new imaging method,” in IEEE Computational Science Engineering Magazine, Winter1995, pp. 63–77.

W. Zhu, Y. Wang, H. L. Graber, R. L. Barbour, J. Chang, “A regularized progressive expansion algorithm for recovery of scattering media from time-resolved data,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed. (Optical Society of America, Washington, D.C., 1994), pp. 211–216.

J. Chang, Y. Wang, R. Aronson, H. L. Graber, R. L. Barbour, “A layer-stripping approach for recovery of scattering media from time-resolved data,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 384–395 (1992).

[CrossRef]

H. L. Graber, R. L. Barbour, J. Chang, R. Aronson, “Identification of the functional form of nonlinear effects of localized finite absorption in a diffusing medium,” in Optical Tomography; Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 669–681 (1995).

[CrossRef]

R. L. Barbour, H. L. Graber, R. Aronson, J. Lubowsky, “Imaging of subsurface regions of random media by remote sensing,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 192–203 (1991).

[CrossRef]

Y. Q. Yao, Y. Wang, R. L. Barbour, H. L. Graber, J. W. Chang, “Scattering characteristics of photon density waves from an object in a spherically two-layer medium,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 291–303 (1995).

[CrossRef]

T. J. Abatzoglou, J. M. Mendel, G. A. Harada, “The constrained total least squares technique and its applications to harmonic superresolution,” IEEE Trans. Signal Process. 39, 1070–1087 (1991).

[CrossRef]

I. Shavitt, C. F. Bender, A. Pipano, R. P. Hosteny, “The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvector of very large symmetric matrices,” J. Comput. Phys. 11, 90–108 (1973).

[CrossRef]

Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, J. H. Hu, R. L. Barbour, “Frequency domain optical tomography in human tissue,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 254–266 (1995).

[CrossRef]

J. H. Justice, A. A. Vassiliou, “Diffraction tomography for geophysical monitoring of hydrocarbon reservoirs,” Proc. IEEE 78, 711–722 (1990).

[CrossRef]

V. Z. Mesarović, N. P. Galatsanos, A. Katsaggelos, “Regularized constrained total least squares image restoration,” IEEE Trans. Image Process. 4, 1096–1108 (1995).

[CrossRef]
[PubMed]

N. K. Bose, H. C. Kim, H. M. Valenzuela, “Recursive total least squares algorithm for image reconstruction,” Multidimens. Syst. Signal Process. 4, 253–268 (1993).

R. L. Barbour, H. L. Graber, J. Chang, S. Barbour, P. C. Koo, R. Aronson, “MR guided optical tomography: prospects and computation for a new imaging method,” in IEEE Computational Science Engineering Magazine, Winter1995, pp. 63–77.

P. Li, S. W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Frequencies Freq. Control 40, 282–292 (1993).

Y. Wang, J. Chang, R. Aronson, R. Barbour, H. Graber, J. Lubowsky, “Imaging scattering media by diffusion tomography: an iterative perturbation approach,” in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE1641, 58–71 (1992).

[CrossRef]

R. L. Barbour, H. L. Graber, R. Aronson, J. Lubowsky, “Imaging of subsurface regions of random media by remote sensing,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 192–203 (1991).

[CrossRef]

T. J. Abatzoglou, J. M. Mendel, G. A. Harada, “The constrained total least squares technique and its applications to harmonic superresolution,” IEEE Trans. Signal Process. 39, 1070–1087 (1991).

[CrossRef]

V. Z. Mesarović, N. P. Galatsanos, A. Katsaggelos, “Regularized constrained total least squares image restoration,” IEEE Trans. Image Process. 4, 1096–1108 (1995).

[CrossRef]
[PubMed]

P. Li, S. W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Frequencies Freq. Control 40, 282–292 (1993).

Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Simultaneous reconstruction of absorption and scattering distributions in turbid media using a Born iterative method,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 96–107 (1995).

[CrossRef]

Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, J. H. Hu, R. L. Barbour, “Frequency domain optical tomography in human tissue,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 254–266 (1995).

[CrossRef]

I. Shavitt, C. F. Bender, A. Pipano, R. P. Hosteny, “The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvector of very large symmetric matrices,” J. Comput. Phys. 11, 90–108 (1973).

[CrossRef]

R. Fletcher, C. M. Reeves, “Function minimization by conjugate gradients,” Comput. J. 7, 149–154 (1964).

X. Yang, T. K. Sarkar, E. Arvas, “A survey of conjugate gradient algorithms for solution of extreme eigen-problem of a symmetric matrix,” IEEE Trans. Acoust. Speech Signal Process. 37, 1550–1556 (1989).

[CrossRef]

H. Chen, T. K. Sarkar, S. A. Dianat, J. D. Brule, “Adaptive spectral estimation by the conjugate gradient method,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 272–284 (1986).

[CrossRef]

I. Shavitt, C. F. Bender, A. Pipano, R. P. Hosteny, “The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvector of very large symmetric matrices,” J. Comput. Phys. 11, 90–108 (1973).

[CrossRef]

M. T. Silvia, E. C. Tacker, “Regularization of Marchenko’s integral equation by total least squares,” J. Acoust. Soc. Am. 72, 1202–1207 (1982).

[CrossRef]

M. T. Silvia, E. C. Tacker, “Regularization of Marchenko’s integral equation by total least squares,” J. Acoust. Soc. Am. 72, 1202–1207 (1982).

[CrossRef]

N. K. Bose, H. C. Kim, H. M. Valenzuela, “Recursive total least squares algorithm for image reconstruction,” Multidimens. Syst. Signal Process. 4, 253–268 (1993).

S. Van Huffel, J. Vandewalle, The Total Least Squares Problem: Computational Aspects and Analysis (SIAM Press, Philadelphia, 1991).

G. H. Golub, C. F. Van Loan, “An analysis of the total least squares problem,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.17, 883–893 (1980).

S. Van Huffel, J. Vandewalle, The Total Least Squares Problem: Computational Aspects and Analysis (SIAM Press, Philadelphia, 1991).

J. H. Justice, A. A. Vassiliou, “Diffraction tomography for geophysical monitoring of hydrocarbon reservoirs,” Proc. IEEE 78, 711–722 (1990).

[CrossRef]

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. H. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 87–120.

J. Chang, Y. Wang, R. Aronson, H. L. Graber, R. L. Barbour, “A layer-stripping approach for recovery of scattering media from time-resolved data,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 384–395 (1992).

[CrossRef]

Y. Wang, J. Chang, R. Aronson, R. Barbour, H. Graber, J. Lubowsky, “Imaging scattering media by diffusion tomography: an iterative perturbation approach,” in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE1641, 58–71 (1992).

[CrossRef]

W. Zhu, Y. Wang, H. L. Graber, R. L. Barbour, J. Chang, “A regularized progressive expansion algorithm for recovery of scattering media from time-resolved data,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed. (Optical Society of America, Washington, D.C., 1994), pp. 211–216.

W. Zhu, Y. Wang, Y. Deng, Y. Yao, R. Barbour, “Multiresolution regularized least squares image reconstruction based on wavelet in optical tomography,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 186–196 (1995).

[CrossRef]

Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Simultaneous reconstruction of absorption and scattering distributions in turbid media using a Born iterative method,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 96–107 (1995).

[CrossRef]

Y. Q. Yao, Y. Wang, R. L. Barbour, H. L. Graber, J. W. Chang, “Scattering characteristics of photon density waves from an object in a spherically two-layer medium,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 291–303 (1995).

[CrossRef]

Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, J. H. Hu, R. L. Barbour, “Frequency domain optical tomography in human tissue,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 254–266 (1995).

[CrossRef]

W. Zhu, Y. Wang, Y. Yao, R. L. Barbour, “Wavelet based multigrid reconstruction algorithm for optical tomography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. Fujimoto, eds. (Optical Society of America, Washington, D.C., 1996), pp. 278–281.

X. Yang, T. K. Sarkar, E. Arvas, “A survey of conjugate gradient algorithms for solution of extreme eigen-problem of a symmetric matrix,” IEEE Trans. Acoust. Speech Signal Process. 37, 1550–1556 (1989).

[CrossRef]

Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Simultaneous reconstruction of absorption and scattering distributions in turbid media using a Born iterative method,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 96–107 (1995).

[CrossRef]

W. Zhu, Y. Wang, Y. Deng, Y. Yao, R. Barbour, “Multiresolution regularized least squares image reconstruction based on wavelet in optical tomography,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 186–196 (1995).

[CrossRef]

W. Zhu, Y. Wang, Y. Yao, R. L. Barbour, “Wavelet based multigrid reconstruction algorithm for optical tomography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. Fujimoto, eds. (Optical Society of America, Washington, D.C., 1996), pp. 278–281.

Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, J. H. Hu, R. L. Barbour, “Frequency domain optical tomography in human tissue,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 254–266 (1995).

[CrossRef]

Y. Q. Yao, Y. Wang, R. L. Barbour, H. L. Graber, J. W. Chang, “Scattering characteristics of photon density waves from an object in a spherically two-layer medium,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 291–303 (1995).

[CrossRef]

W. Zhu, Y. Wang, Y. Yao, R. L. Barbour, “Wavelet based multigrid reconstruction algorithm for optical tomography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. Fujimoto, eds. (Optical Society of America, Washington, D.C., 1996), pp. 278–281.

W. Zhu, Y. Wang, Y. Deng, Y. Yao, R. Barbour, “Multiresolution regularized least squares image reconstruction based on wavelet in optical tomography,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 186–196 (1995).

[CrossRef]

W. Zhu, Y. Wang, H. L. Graber, R. L. Barbour, J. Chang, “A regularized progressive expansion algorithm for recovery of scattering media from time-resolved data,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed. (Optical Society of America, Washington, D.C., 1994), pp. 211–216.

Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Simultaneous reconstruction of absorption and scattering distributions in turbid media using a Born iterative method,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 96–107 (1995).

[CrossRef]

Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, J. H. Hu, R. L. Barbour, “Frequency domain optical tomography in human tissue,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 254–266 (1995).

[CrossRef]

K. M. Case, P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, Mass., 1967), Chap. 8, pp. 194–231.

R. Fletcher, C. M. Reeves, “Function minimization by conjugate gradients,” Comput. J. 7, 149–154 (1964).

H. Chen, T. K. Sarkar, S. A. Dianat, J. D. Brule, “Adaptive spectral estimation by the conjugate gradient method,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 272–284 (1986).

[CrossRef]

X. Yang, T. K. Sarkar, E. Arvas, “A survey of conjugate gradient algorithms for solution of extreme eigen-problem of a symmetric matrix,” IEEE Trans. Acoust. Speech Signal Process. 37, 1550–1556 (1989).

[CrossRef]

V. Z. Mesarović, N. P. Galatsanos, A. Katsaggelos, “Regularized constrained total least squares image restoration,” IEEE Trans. Image Process. 4, 1096–1108 (1995).

[CrossRef]
[PubMed]

C. E. Davila, “An efficient recursive total least squares algorithm for FIR adaptive filtering,” IEEE Trans. Signal Process. 42, 268–280 (1994).

[CrossRef]

T. J. Abatzoglou, J. M. Mendel, G. A. Harada, “The constrained total least squares technique and its applications to harmonic superresolution,” IEEE Trans. Signal Process. 39, 1070–1087 (1991).

[CrossRef]

P. Li, S. W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Frequencies Freq. Control 40, 282–292 (1993).

M. T. Silvia, E. C. Tacker, “Regularization of Marchenko’s integral equation by total least squares,” J. Acoust. Soc. Am. 72, 1202–1207 (1982).

[CrossRef]

I. Shavitt, C. F. Bender, A. Pipano, R. P. Hosteny, “The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvector of very large symmetric matrices,” J. Comput. Phys. 11, 90–108 (1973).

[CrossRef]

N. K. Bose, H. C. Kim, H. M. Valenzuela, “Recursive total least squares algorithm for image reconstruction,” Multidimens. Syst. Signal Process. 4, 253–268 (1993).

J. H. Justice, A. A. Vassiliou, “Diffraction tomography for geophysical monitoring of hydrocarbon reservoirs,” Proc. IEEE 78, 711–722 (1990).

[CrossRef]

G. H. Golub, “Some modified matrix eigenvalue problems,” SIAM Rev. 15, 318–334 (1973).

[CrossRef]

S. Van Huffel, J. Vandewalle, The Total Least Squares Problem: Computational Aspects and Analysis (SIAM Press, Philadelphia, 1991).

H. L. Graber, R. L. Barbour, J. Chang, R. Aronson, “Identification of the functional form of nonlinear effects of localized finite absorption in a diffusing medium,” in Optical Tomography; Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 669–681 (1995).

[CrossRef]

K. M. Case, P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, Mass., 1967), Chap. 8, pp. 194–231.

G. H. Golub, C. F. Van Loan, “An analysis of the total least squares problem,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.17, 883–893 (1980).

R. L. Barbour, H. L. Graber, R. Aronson, J. Lubowsky, “Imaging of subsurface regions of random media by remote sensing,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 192–203 (1991).

[CrossRef]

Y. Q. Yao, Y. Wang, R. L. Barbour, H. L. Graber, J. W. Chang, “Scattering characteristics of photon density waves from an object in a spherically two-layer medium,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 291–303 (1995).

[CrossRef]

Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, J. H. Hu, R. L. Barbour, “Frequency domain optical tomography in human tissue,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 254–266 (1995).

[CrossRef]

W. Zhu, Y. Wang, Y. Yao, R. L. Barbour, “Wavelet based multigrid reconstruction algorithm for optical tomography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. Fujimoto, eds. (Optical Society of America, Washington, D.C., 1996), pp. 278–281.

R. L. Barbour, H. L. Graber, J. Chang, S. Barbour, P. C. Koo, R. Aronson, “MR guided optical tomography: prospects and computation for a new imaging method,” in IEEE Computational Science Engineering Magazine, Winter1995, pp. 63–77.

Y. Wang, J. Chang, R. Aronson, R. Barbour, H. Graber, J. Lubowsky, “Imaging scattering media by diffusion tomography: an iterative perturbation approach,” in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE1641, 58–71 (1992).

[CrossRef]

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. H. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 87–120.

J. Chang, Y. Wang, R. Aronson, H. L. Graber, R. L. Barbour, “A layer-stripping approach for recovery of scattering media from time-resolved data,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 384–395 (1992).

[CrossRef]

W. Zhu, Y. Wang, H. L. Graber, R. L. Barbour, J. Chang, “A regularized progressive expansion algorithm for recovery of scattering media from time-resolved data,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed. (Optical Society of America, Washington, D.C., 1994), pp. 211–216.

W. Zhu, Y. Wang, Y. Deng, Y. Yao, R. Barbour, “Multiresolution regularized least squares image reconstruction based on wavelet in optical tomography,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 186–196 (1995).

[CrossRef]

S. R. Arridge, “The forward and inverse problems in time resolved infra-red imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 35–64.

Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Simultaneous reconstruction of absorption and scattering distributions in turbid media using a Born iterative method,” in Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. Carvlin, M. A. Fiddy, eds., Proc. SPIE2570, 96–107 (1995).

[CrossRef]