Abstract

A new analytic model, based on the interference of waves, and numerical calculations are exploited for analyzing the spectral behavior of the transmitted and reflected intensities from metal-based grating–waveguide structures. The results reveal that strong intensity changes can occur near resonance with resonance bandwidths in the subnanometer range. These intensity changes are found to be strongly dependent on specific parameters of the structures, particularly the height of the grating and the absorption in the metallic layer. Several structures were fabricated and evaluated experimentally to demonstrate that spectral bandwidths of 0.1 nm and intensity changes as large as 60% can be achieved.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13, 233–253 (1977).
    [CrossRef]
  2. G. J. Swanson, W. B. Veldkamp, “Binary lenses for use at 10.6 micrometers,” Opt. Eng. (Bellingham) 24, 791–795 (1985).
    [CrossRef]
  3. E. Hasman, N. Davidson, A. A. Friesem, “Efficient multilevel phase holograms for CO2 lasers,” Opt. Lett. 16, 423–425 (1991).
    [CrossRef] [PubMed]
  4. E. G. Loewen, M. Neviere, “Dielectric coated gratings: a curious property,” Appl. Opt. 16, 3009–3011 (1977).
    [CrossRef] [PubMed]
  5. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  6. I. A. Avrutskii, V. A. Sychugov, “Reflection of a bounded light beam from the surface of periodically perturbed waveguide,” Sov. Phys. Tech. Phys. 32, 235–237 (1987).
  7. S. S. Wang, R. Magnusson, J. S. Bagby, M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
    [CrossRef]
  8. S. Hava, M. Auslender, “Silicon grating-based mirror for 1.3-µm polarized beams: Matlab-aided design,” Appl. Opt. 34, 1053–1058 (1995).
    [CrossRef] [PubMed]
  9. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, R. Steingrueber, “Light modulation with resonant grating–waveguide structures,” Opt. Lett. 21, 1564–1566 (1996).
    [CrossRef] [PubMed]
  10. J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
    [CrossRef]
  11. E. Popov, L. Mashev, D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
    [CrossRef]
  12. D. Hornauer, H. Raether, “Light modes in thin polyurethane and LiF films,” Opt. Commun. 7, 297–301 (1973).
    [CrossRef]
  13. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
    [CrossRef]
  14. P. K. Tien, R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
    [CrossRef]
  15. P. Sheng, R. S. Stepleman, P. N. Sanda, “Exact eigenfunctions for square wave gratings: applications to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982).
    [CrossRef]

1996 (1)

1995 (1)

1991 (1)

1990 (1)

1987 (1)

I. A. Avrutskii, V. A. Sychugov, “Reflection of a bounded light beam from the surface of periodically perturbed waveguide,” Sov. Phys. Tech. Phys. 32, 235–237 (1987).

1986 (3)

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

E. Popov, L. Mashev, D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
[CrossRef]

1985 (1)

G. J. Swanson, W. B. Veldkamp, “Binary lenses for use at 10.6 micrometers,” Opt. Eng. (Bellingham) 24, 791–795 (1985).
[CrossRef]

1982 (1)

P. Sheng, R. S. Stepleman, P. N. Sanda, “Exact eigenfunctions for square wave gratings: applications to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982).
[CrossRef]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

1977 (2)

A. Yariv, M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13, 233–253 (1977).
[CrossRef]

E. G. Loewen, M. Neviere, “Dielectric coated gratings: a curious property,” Appl. Opt. 16, 3009–3011 (1977).
[CrossRef] [PubMed]

1973 (1)

D. Hornauer, H. Raether, “Light modes in thin polyurethane and LiF films,” Opt. Commun. 7, 297–301 (1973).
[CrossRef]

1970 (1)

Auslender, M.

Avrutskii, I. A.

I. A. Avrutskii, V. A. Sychugov, “Reflection of a bounded light beam from the surface of periodically perturbed waveguide,” Sov. Phys. Tech. Phys. 32, 235–237 (1987).

Bagby, J. S.

Burke, J. J.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Davidson, N.

Engel, H.

Friesem, A. A.

Gaylord, T. K.

Hasman, E.

Hava, S.

Hornauer, D.

D. Hornauer, H. Raether, “Light modes in thin polyurethane and LiF films,” Opt. Commun. 7, 297–301 (1973).
[CrossRef]

Loewen, E. G.

Magnusson, R.

Mashev, L.

E. Popov, L. Mashev, D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

Maystre, D.

E. Popov, L. Mashev, D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

Moharam, M. G.

Nakamura, M.

A. Yariv, M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13, 233–253 (1977).
[CrossRef]

Neviere, M.

Popov, E.

E. Popov, L. Mashev, D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

Raether, H.

D. Hornauer, H. Raether, “Light modes in thin polyurethane and LiF films,” Opt. Commun. 7, 297–301 (1973).
[CrossRef]

Rosenblatt, D.

Sanda, P. N.

P. Sheng, R. S. Stepleman, P. N. Sanda, “Exact eigenfunctions for square wave gratings: applications to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982).
[CrossRef]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Sharon, A.

Sheng, P.

P. Sheng, R. S. Stepleman, P. N. Sanda, “Exact eigenfunctions for square wave gratings: applications to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Steingrueber, R.

Stepleman, R. S.

P. Sheng, R. S. Stepleman, P. N. Sanda, “Exact eigenfunctions for square wave gratings: applications to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982).
[CrossRef]

Swanson, G. J.

G. J. Swanson, W. B. Veldkamp, “Binary lenses for use at 10.6 micrometers,” Opt. Eng. (Bellingham) 24, 791–795 (1985).
[CrossRef]

Sychugov, V. A.

I. A. Avrutskii, V. A. Sychugov, “Reflection of a bounded light beam from the surface of periodically perturbed waveguide,” Sov. Phys. Tech. Phys. 32, 235–237 (1987).

Tamir, T.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Tien, P. K.

Ulrich, R.

Veldkamp, W. B.

G. J. Swanson, W. B. Veldkamp, “Binary lenses for use at 10.6 micrometers,” Opt. Eng. (Bellingham) 24, 791–795 (1985).
[CrossRef]

Wang, S. S.

Weber, H. G.

Yariv, A.

A. Yariv, M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13, 233–253 (1977).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

A. Yariv, M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13, 233–253 (1977).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Acta (1)

E. Popov, L. Mashev, D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

Opt. Commun. (1)

D. Hornauer, H. Raether, “Light modes in thin polyurethane and LiF films,” Opt. Commun. 7, 297–301 (1973).
[CrossRef]

Opt. Eng. (Bellingham) (1)

G. J. Swanson, W. B. Veldkamp, “Binary lenses for use at 10.6 micrometers,” Opt. Eng. (Bellingham) 24, 791–795 (1985).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (2)

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

P. Sheng, R. S. Stepleman, P. N. Sanda, “Exact eigenfunctions for square wave gratings: applications to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916 (1982).
[CrossRef]

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

I. A. Avrutskii, V. A. Sychugov, “Reflection of a bounded light beam from the surface of periodically perturbed waveguide,” Sov. Phys. Tech. Phys. 32, 235–237 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Basic geometry of a metal-based grating–waveguide structure (MBGWS).

Fig. 2
Fig. 2

Normalized real part of the mode propagation constant, βr.

Fig. 3
Fig. 3

Normalized imaginary part of the mode propagation constant, βi.

Fig. 4
Fig. 4

Propagation of rays in a MBGWS: (a) two possible paths for the emerging diffracted waves from the structure; (b) two additional paths for the diffracted waves and one for the zero-order wave.

Fig. 5
Fig. 5

Normalized reflected intensity R as a function of the modified dephasing Δ/S for three different modified loss values α/S.

Fig. 6
Fig. 6

Numerical calculations for the normalized reflected intensity as a function of wavelength for the TM01 mode. The solid curve shows results for a waveguide thickness of 120 nm, close to the mode cutoff; the dashed curve shows results for a waveguide thickness of 125 nm.

Fig. 7
Fig. 7

TM01 mode envelope at resonance as a function of the normal distance from the substrate–metal interface.

Fig. 8
Fig. 8

Experimental setup for evaluating the spectral response of the MBGWS.

Fig. 9
Fig. 9

Experimental result for the reflected intensity as a function of wavelength.

Fig. 10
Fig. 10

CCD photograph of the reflected intensities from several pixels, one of which is at resonance.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

2k2zt2+2ϕ21+2ϕ23=2mπ,
ER=E1+j=14 n=2 Enj=-r0[exp(iϕ)]St2E0+{1-Str0 exp(iϕ)-r0[exp(iϕ)]St+r02[exp(2iϕ)]St2}×{Sd1 exp(-iπ/2)exp[-α+i(2k2t2+2ϕ21+2ϕ23+Δ)]×[exp(-iπ/2)]Sd2E0+Sd1 exp(-iπ/2)×exp[-α+i(2k2t2+2ϕ21+2ϕ23+Δ)]×Sr exp[-α+i(2k2t2+2ϕ21+2ϕ23+Δ)]×[exp(-iπ/2)]Sd2E0++},
ER=-r0[exp(iϕ)]E0-[1-2r0 exp(iϕ)+r02 exp(2iϕ)] S exp(-α+iΔ)1-Sr exp(-α+iΔ)E0.
ET=t0E0-[1-r0 exp(iϕ)]×S exp(-α+iΔ)1-Sr exp(-α+iΔ)t0E0.
Sr=1-[1-r0 exp(iϕ)]S,
Sd1Δεζ±1k02tg/2K,
ERE0[exp(iϕ)]
×-(r0Δ+S sin ϕ)+i[S(r0-cos ϕ)-αr0](Δ+Sr0 sin ϕ)+i[S(1-r0 cos ϕ)+α].
ETE0t0 Δ+iα(Δ+Sr0 sin ϕ)+i[S(1-r0 cos ϕ)+α].
R(r0Δ+S sin ϕ)2+[S(r0-cos ϕ)-αr0]2(Δ+Sr0 sin ϕ)2+[S(1-r0 cos ϕ)+α]2,
Tt02 Δ2+α2(Δ+Sr0 sin ϕ)2+[S(1-r0 cos ϕ)+α]2.
R=Δ2+(S-α)2Δ2+(S+α)2.
R=(S-α)2(S+α)2.

Metrics