Abstract

Recently, a new concept for achieving superresolution was introduced. It was denoted space–bandwidth product (SW) adaptation. This concept evolves the adaptation of the SW function (found from the Wigner chart) of a signal in such a way that it could be accepted by the Wigner chart of the system. The theoretical aspects of this approach were presented in a companion paper. Several examples and practical demonstrations are considered. These examples indicate the potential of the new approach.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Toraldo Di Francia, “Resolving power and information,” J. Opt. Soc. Am. 45, 497–501 (1955).
    [CrossRef]
  2. G. Toraldo Di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. 59, 799–804 (1969).
    [CrossRef] [PubMed]
  3. M. Francon, “Amélioration de résolution d’optique,” Nuovo Cimento Suppl. 9, 283–290 (1952).
  4. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 56, 1463–1472 (1966).
    [CrossRef]
  5. A. I. Kartashev, “Optical systems with enhanced resolving power,” Opt. Spectrosc. 9, 204–206 (1960).
  6. H. Bartelt, A. W. Lohmann, “Optical processing of 1-D signals,” Opt. Commun. 42, 87–91 (1982).
    [CrossRef]
  7. W. Gartner, A. W. Lohmann, “An experiment going beyond Abbe’s limit of diffraction,” Z. Phys. 174, 18 (1963).
  8. D. Mendlovic, A. W. Lohmann, “Space–bandwidth product adaptation and its application for superresolution: fundamentals,” J. Opt. Soc. Am. A 14, 558–562 (1997).
    [CrossRef]
  9. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).
    [CrossRef]
  10. K. M. Mashoney, M. C. Nuss, R. L. Morrison, “Tera-bit per second all optical bit pattern recognition,” in Annual Meeting (Optical Society of America, Washington, D.C., 1995), pp. pD14-1.
  11. A. M. Weiner, D. E. Leaird, D. H. Retze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2604 (1992).
    [CrossRef]
  12. D. Mendlovic, Z. Zalevsky, “The generalized temporal–spatial Wigner distribution function and its properties,” presented at International Commission for Optics 17 Meeting, Taejon, Korea, 1996.
  13. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993).
    [CrossRef]
  14. H. Osterberg, L. W. Smith, “Transmission of optical energy along surfaces. Part I. Homogeneous media,” J. Opt. Soc. Am. 54, 1073–1078 (1964).
    [CrossRef]
  15. W. Lukosz, M. Marched, “Optical systems with resolving powers exceeding the classical limit,” Opt. Acta 10, 241–248 (1963).
    [CrossRef]
  16. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit. II,” J. Opt. Soc. Am. 57, 932 (1967).
    [CrossRef]
  17. M. A. Grimm, A. W. Lohmann, “Super resolution image for 1-D objects,” J. Opt. Soc. Am. 56, 1151–1156 (1966).
    [CrossRef]

1997 (1)

1996 (1)

1993 (1)

1992 (1)

A. M. Weiner, D. E. Leaird, D. H. Retze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2604 (1992).
[CrossRef]

1982 (1)

H. Bartelt, A. W. Lohmann, “Optical processing of 1-D signals,” Opt. Commun. 42, 87–91 (1982).
[CrossRef]

1969 (1)

1967 (1)

1966 (2)

1964 (1)

1963 (2)

W. Gartner, A. W. Lohmann, “An experiment going beyond Abbe’s limit of diffraction,” Z. Phys. 174, 18 (1963).

W. Lukosz, M. Marched, “Optical systems with resolving powers exceeding the classical limit,” Opt. Acta 10, 241–248 (1963).
[CrossRef]

1960 (1)

A. I. Kartashev, “Optical systems with enhanced resolving power,” Opt. Spectrosc. 9, 204–206 (1960).

1955 (1)

1952 (1)

M. Francon, “Amélioration de résolution d’optique,” Nuovo Cimento Suppl. 9, 283–290 (1952).

Bartelt, H.

H. Bartelt, A. W. Lohmann, “Optical processing of 1-D signals,” Opt. Commun. 42, 87–91 (1982).
[CrossRef]

Dorsch, R. G.

Ferreira, C.

Francon, M.

M. Francon, “Amélioration de résolution d’optique,” Nuovo Cimento Suppl. 9, 283–290 (1952).

Gartner, W.

W. Gartner, A. W. Lohmann, “An experiment going beyond Abbe’s limit of diffraction,” Z. Phys. 174, 18 (1963).

Grimm, M. A.

Kartashev, A. I.

A. I. Kartashev, “Optical systems with enhanced resolving power,” Opt. Spectrosc. 9, 204–206 (1960).

Leaird, D. E.

A. M. Weiner, D. E. Leaird, D. H. Retze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2604 (1992).
[CrossRef]

Lohmann, A. W.

Lukosz, W.

Marched, M.

W. Lukosz, M. Marched, “Optical systems with resolving powers exceeding the classical limit,” Opt. Acta 10, 241–248 (1963).
[CrossRef]

Mashoney, K. M.

K. M. Mashoney, M. C. Nuss, R. L. Morrison, “Tera-bit per second all optical bit pattern recognition,” in Annual Meeting (Optical Society of America, Washington, D.C., 1995), pp. pD14-1.

Mendlovic, D.

Morrison, R. L.

K. M. Mashoney, M. C. Nuss, R. L. Morrison, “Tera-bit per second all optical bit pattern recognition,” in Annual Meeting (Optical Society of America, Washington, D.C., 1995), pp. pD14-1.

Nuss, M. C.

K. M. Mashoney, M. C. Nuss, R. L. Morrison, “Tera-bit per second all optical bit pattern recognition,” in Annual Meeting (Optical Society of America, Washington, D.C., 1995), pp. pD14-1.

Osterberg, H.

Paek, E. G.

A. M. Weiner, D. E. Leaird, D. H. Retze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2604 (1992).
[CrossRef]

Retze, D. H.

A. M. Weiner, D. E. Leaird, D. H. Retze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2604 (1992).
[CrossRef]

Smith, L. W.

Toraldo Di Francia, G.

Weiner, A. M.

A. M. Weiner, D. E. Leaird, D. H. Retze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2604 (1992).
[CrossRef]

Zalevsky, Z.

A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).
[CrossRef]

D. Mendlovic, Z. Zalevsky, “The generalized temporal–spatial Wigner distribution function and its properties,” presented at International Commission for Optics 17 Meeting, Taejon, Korea, 1996.

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, D. H. Retze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2604 (1992).
[CrossRef]

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (3)

Nuovo Cimento Suppl. (1)

M. Francon, “Amélioration de résolution d’optique,” Nuovo Cimento Suppl. 9, 283–290 (1952).

Opt. Acta (1)

W. Lukosz, M. Marched, “Optical systems with resolving powers exceeding the classical limit,” Opt. Acta 10, 241–248 (1963).
[CrossRef]

Opt. Commun. (1)

H. Bartelt, A. W. Lohmann, “Optical processing of 1-D signals,” Opt. Commun. 42, 87–91 (1982).
[CrossRef]

Opt. Spectrosc. (1)

A. I. Kartashev, “Optical systems with enhanced resolving power,” Opt. Spectrosc. 9, 204–206 (1960).

Z. Phys. (1)

W. Gartner, A. W. Lohmann, “An experiment going beyond Abbe’s limit of diffraction,” Z. Phys. 174, 18 (1963).

Other (2)

K. M. Mashoney, M. C. Nuss, R. L. Morrison, “Tera-bit per second all optical bit pattern recognition,” in Annual Meeting (Optical Society of America, Washington, D.C., 1995), pp. pD14-1.

D. Mendlovic, Z. Zalevsky, “The generalized temporal–spatial Wigner distribution function and its properties,” presented at International Commission for Optics 17 Meeting, Taejon, Korea, 1996.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Magnification adaptation for a CCD detector.

Fig. 2
Fig. 2

Adaptation using a lens.

Fig. 3
Fig. 3

Common SW of signals and systems.

Fig. 4
Fig. 4

Adaptation using a fractional Fourier ion transform (FRT).

Fig. 5
Fig. 5

Adaptation using the moiré effect.

Fig. 6
Fig. 6

Time multiplexing using a synchronized moving pinhole.

Fig. 7
Fig. 7

Time multiplexing using tunneling microscopy.

Fig. 8
Fig. 8

Time multiplexing using a pair of scanning gratings.

Fig. 9
Fig. 9

λ multiplexing adaptation.

Fig. 10
Fig. 10

Polarization codification.

Fig. 11
Fig. 11

System that performs the polarization codification.

Tables (1)

Tables Icon

Table 1 Adaptation for a Human Eye

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

W(x, ν)=- fx+x2f*x-x2exp(-i2πνx)dx,
SWB(x, ν)=10W(x, ν)>Wthreshotherwise,
W(x, ν, t, w)=- - ux+x2, t+t2×u*x-x2, t-t2exp(-2πiνx)×exp(-2πiwt)dxdt.
SWI(x, ν)SWY(x, ν).
Area(SWI)=NsignalNsystem=Area(SWY),
NsignalNsystem,SWI(x, ν)SWY(x, ν).
I0(x)I0(aλ)transmissionIB(aλ)IB(x).

Metrics