Abstract

A fractional cross-spectral density is defined by use of an optical fractional Fourier transform based on the rotation of a Wigner distribution function within the accuracy of the paraxial approximation. The properties of the planar Gaussian Schell-model (GSM) source field in a fractional Fourier plane are analyzed theoretically. As a result, it becomes clear that the extent, the wave-front-curvature radius, and the spectral shift of the fractional Fourier field depend strongly on the fractional order of the Fourier transform, the Fresnel number associated with the GSM source size, and the scaled spatial-coherence length of the GSM source.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription