A. Pifferi, R. Berg, P. Taroni, S. Andersson-Engels, “Fitting of time-resolved reflectance curves with a Monte Carlo model,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 311–314.

A. Pifferi, R. Berg, P. Taroni, S. Andersson-Engels, “Fitting of time-resolved reflectance curves with a Monte Carlo model,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 311–314.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).

[CrossRef]
[PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).

[CrossRef]
[PubMed]

T. Durduran, D. A. Boas, B. Chance, A. G. Yodh, “Validity of the diffusion equation for small heterogeneities,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, G. Fujimto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, DC, 1996), pp. 60–63.

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.d. dissertation (University of Pennsylvania, Philadelphia, 1996).

K. M. Case, P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, Mass., 1967), Chap. 8.

X. D. Li, T. Durduran, B. Chance, A. G. Yodh, “Diffraction tomography for biomedical imaging with diffuse photon density waves,” Opt. Lett. 32, 573–575 (1997); errata, 32, 1198 (1997).

[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).

[CrossRef]
[PubMed]

S. Feng, F. Zeng, B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34, 3826–3837 (1995).

[CrossRef]
[PubMed]

A. G. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light, Phys. Today 48, (March), 34–40 (1995).

[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).

[CrossRef]
[PubMed]

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).

[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).

[CrossRef]
[PubMed]

T. Durduran, D. A. Boas, B. Chance, A. G. Yodh, “Validity of the diffusion equation for small heterogeneities,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, G. Fujimto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, DC, 1996), pp. 60–63.

B. Davidson, Neutron Transport Theory (Clarendon, Oxford, 1957).

J. J. Duderstadt, W. R. Martin, Transport Theory (Wiley, New York, 1979).

X. D. Li, T. Durduran, B. Chance, A. G. Yodh, “Diffraction tomography for biomedical imaging with diffuse photon density waves,” Opt. Lett. 32, 573–575 (1997); errata, 32, 1198 (1997).

[CrossRef]

T. Durduran, D. A. Boas, B. Chance, A. G. Yodh, “Validity of the diffusion equation for small heterogeneities,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, G. Fujimto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, DC, 1996), pp. 60–63.

S. Glasstone, M. C. Edlund, The Elements of Nuclear Reactor Theory (Van Nostrand, New York, 1952), Chaps. 5 and 14.

A. H. Gandjbakhche, G. H. Weiss, Random Walk and Diffusion-like Models of Photon Migration in Turbid Media, Vol. XXXIV of Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1995).

S. Glasstone, M. C. Edlund, The Elements of Nuclear Reactor Theory (Van Nostrand, New York, 1952), Chaps. 5 and 14.

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).

[CrossRef]

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).

[CrossRef]

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).

[CrossRef]

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).

[CrossRef]

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

[CrossRef]
[PubMed]

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical–Thermal Response of Laser-irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995).

G. Nishimura, K. Katamaya, M. Kinjo, M. Tamura, “Diffusing-wave absorption in the homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).

[CrossRef]

K. Katayama, G. Nishimura, M. Kinjo, M. Tamura, “Absorbance measurements in turbid media by the photon correlation method,” Appl. Opt. 34, 7419–7427 (1996).

[CrossRef]

G. Nishimura, K. Katamaya, M. Kinjo, M. Tamura, “Diffusing-wave absorption in the homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).

[CrossRef]

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).

[CrossRef]

X. D. Li, T. Durduran, B. Chance, A. G. Yodh, “Diffraction tomography for biomedical imaging with diffuse photon density waves,” Opt. Lett. 32, 573–575 (1997); errata, 32, 1198 (1997).

[CrossRef]

W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).

[CrossRef]
[PubMed]

J. J. Duderstadt, W. R. Martin, Transport Theory (Wiley, New York, 1979).

J. Masoliver, G. H. Weiss, “Finite-velocity diffusion,” Eur. J. Phys. 17, 190–196 (1996).

[CrossRef]

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).

[CrossRef]

G. Nishimura, K. Katamaya, M. Kinjo, M. Tamura, “Diffusing-wave absorption in the homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).

[CrossRef]

K. Katayama, G. Nishimura, M. Kinjo, M. Tamura, “Absorbance measurements in turbid media by the photon correlation method,” Appl. Opt. 34, 7419–7427 (1996).

[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).

[CrossRef]
[PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).

[CrossRef]
[PubMed]

H. B. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical-image reconstruction using frequency-domain data simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).

[CrossRef]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially-resolved absolute diffuse reflectance measurements for non-invasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).

[CrossRef]
[PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).

[CrossRef]
[PubMed]

A. Pifferi, R. Berg, P. Taroni, S. Andersson-Engels, “Fitting of time-resolved reflectance curves with a Monte Carlo model,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 311–314.

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).

[CrossRef]

W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).

[CrossRef]
[PubMed]

K. Katayama, G. Nishimura, M. Kinjo, M. Tamura, “Absorbance measurements in turbid media by the photon correlation method,” Appl. Opt. 34, 7419–7427 (1996).

[CrossRef]

G. Nishimura, K. Katamaya, M. Kinjo, M. Tamura, “Diffusing-wave absorption in the homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).

[CrossRef]

A. Pifferi, R. Berg, P. Taroni, S. Andersson-Engels, “Fitting of time-resolved reflectance curves with a Monte Carlo model,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 311–314.

Y. Tsuchiya, T. Urakami, “Photon migration model for turbid biological medium having various shapes,” Jpn. J. Appl. Phys. Part 2 34, 79–81 (1995).

[CrossRef]

Y. Tsuchiya, T. Urakami, “Photon migration model for turbid biological medium having various shapes,” Jpn. J. Appl. Phys. Part 2 34, 79–81 (1995).

[CrossRef]

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).

[CrossRef]
[PubMed]

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

[CrossRef]
[PubMed]

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical–Thermal Response of Laser-irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995).

J. Masoliver, G. H. Weiss, “Finite-velocity diffusion,” Eur. J. Phys. 17, 190–196 (1996).

[CrossRef]

A. H. Gandjbakhche, G. H. Weiss, Random Walk and Diffusion-like Models of Photon Migration in Turbid Media, Vol. XXXIV of Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1995).

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially-resolved absolute diffuse reflectance measurements for non-invasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).

[CrossRef]
[PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).

[CrossRef]
[PubMed]

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).

[CrossRef]

X. D. Li, T. Durduran, B. Chance, A. G. Yodh, “Diffraction tomography for biomedical imaging with diffuse photon density waves,” Opt. Lett. 32, 573–575 (1997); errata, 32, 1198 (1997).

[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).

[CrossRef]
[PubMed]

A. G. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light, Phys. Today 48, (March), 34–40 (1995).

[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).

[CrossRef]
[PubMed]

T. Durduran, D. A. Boas, B. Chance, A. G. Yodh, “Validity of the diffusion equation for small heterogeneities,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, G. Fujimto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, DC, 1996), pp. 60–63.

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

[CrossRef]
[PubMed]

K. M. Case, P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, Mass., 1967), Chap. 8.

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).

[CrossRef]
[PubMed]

S. Feng, F. Zeng, B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34, 3826–3837 (1995).

[CrossRef]
[PubMed]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially-resolved absolute diffuse reflectance measurements for non-invasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).

[CrossRef]
[PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).

[CrossRef]
[PubMed]

K. Katayama, G. Nishimura, M. Kinjo, M. Tamura, “Absorbance measurements in turbid media by the photon correlation method,” Appl. Opt. 34, 7419–7427 (1996).

[CrossRef]

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).

[CrossRef]

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

[CrossRef]
[PubMed]

J. Masoliver, G. H. Weiss, “Finite-velocity diffusion,” Eur. J. Phys. 17, 190–196 (1996).

[CrossRef]

H. B. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical-image reconstruction using frequency-domain data simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).

[CrossRef]

K. Furutsu, “Pulse wave scattering by an absorber and integrated attenuation in the diffusion approximation,” J. Opt. Soc. Am. A 14, 267–274 (1997).

[CrossRef]

J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite place bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).

[CrossRef]
[PubMed]

P. N. den Outer, T. M. Nieuwenhuizen, A. Lagendijk, “Location of objects in multiple-scattering media,” J. Opt. Soc. Am. A 10, 1209–1218 (1993).

[CrossRef]

Y. Tsuchiya, T. Urakami, “Photon migration model for turbid biological medium having various shapes,” Jpn. J. Appl. Phys. Part 2 34, 79–81 (1995).

[CrossRef]

G. Nishimura, K. Katamaya, M. Kinjo, M. Tamura, “Diffusing-wave absorption in the homogeneous turbid media,” Opt. Commun. 128, 99–107 (1996).

[CrossRef]

X. D. Li, T. Durduran, B. Chance, A. G. Yodh, “Diffraction tomography for biomedical imaging with diffuse photon density waves,” Opt. Lett. 32, 573–575 (1997); errata, 32, 1198 (1997).

[CrossRef]

M. Bassani, F. Martelli, G. Zaccanti, D. Contini, “Independence of the diffusion coefficient from absorption: experimental and numerical evidence,” Opt. Lett. 22, 853–855 (1997).

[CrossRef]
[PubMed]

W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).

[CrossRef]
[PubMed]

C. P. Gonatas, M. Miwa, M. Ishii, J. Schotland, B. Chance, J. S. Leigh, “Effects due to geometry and boundary conditions in multiple light scattering,” Phys. Rev. E 48, 2212–2216 (1993).

[CrossRef]

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).

[CrossRef]

A. G. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light, Phys. Today 48, (March), 34–40 (1995).

[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).

[CrossRef]
[PubMed]

B. Chance, ed., Photon Migration in Tissues (Plenum, New York, 1989).

T. Durduran, D. A. Boas, B. Chance, A. G. Yodh, “Validity of the diffusion equation for small heterogeneities,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, G. Fujimto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, DC, 1996), pp. 60–63.

B. Davidson, Neutron Transport Theory (Clarendon, Oxford, 1957).

J. J. Duderstadt, W. R. Martin, Transport Theory (Wiley, New York, 1979).

K. M. Case, P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, Mass., 1967), Chap. 8.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.

S. Glasstone, M. C. Edlund, The Elements of Nuclear Reactor Theory (Van Nostrand, New York, 1952), Chaps. 5 and 14.

A. Pifferi, R. Berg, P. Taroni, S. Andersson-Engels, “Fitting of time-resolved reflectance curves with a Monte Carlo model,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 311–314.

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.d. dissertation (University of Pennsylvania, Philadelphia, 1996).

A. H. Gandjbakhche, G. H. Weiss, Random Walk and Diffusion-like Models of Photon Migration in Turbid Media, Vol. XXXIV of Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1995).

The photon migration imaging software and the Monte Carlo program are available upon request from the authors.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

S. L. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical–Thermal Response of Laser-irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995).

Information on independence of the diffusion coefficient from absorption is available from G. Nishimura, Biophysics Laboratory, Research Institute for Hokkaido University, Sapporo 060 Japan; e-mail: gnishi@imdes.hokudai.ac.jp.