P. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).

[CrossRef]

D. Felbacq, D. Maystre, G. Tayeb, “Localization of light by a set of parallel cylinders,” J. Mod. Opt. 42, 473–482 (1995).

[CrossRef]

E. Yablonovitch, “Photonic crystals,” J. Mod. Opt. 41, 173–194 (1994).

[CrossRef]

D. R. Smith, S. Schultz, S. L. McCall, P. M. Platzmann, “Defect studies in a two-dimensional periodic photonic lattice,” J. Mod. Opt. 41, 395–404 (1994).

[CrossRef]

D. Maystre, “Electromagnetic study of photonic band gaps,” Pure Appl. Opt. 3, 975–993 (1994).

[CrossRef]

D. Felbacq, G. Tayeb, D. Maystre, “Scattering by a random set of parallel cylinders,” J. Opt. Soc. Am. A 11, 2526–2538 (1994).

[CrossRef]

M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, K. M. Ho, “Photonic band gaps and defects in two dimensions: studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).

[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

[CrossRef]

J. B. Pendry, A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).

[CrossRef]
[PubMed]

D. Maystre, M. Cadilhac, “Singularities of the continuation of the fields and validity of Rayleigh’s hypothesis,” J. Math. Phys. 26, 2201–2204 (1985).

[CrossRef]

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).

[CrossRef]

N. R. Hill, V. Celli, “Limits of convergence of the Rayleigh method for surface scattering,” Phys. Rev. B 17, 2478–2481 (1978).

[CrossRef]

M. Abramovitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

[CrossRef]

T. Baba, T. Matsuzaki, “GaInAsP/InP 2-dimensional photonic crystals,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Scientific Institutes SeriesE. J. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996).

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

[CrossRef]

D. Maystre, M. Cadilhac, “Singularities of the continuation of the fields and validity of Rayleigh’s hypothesis,” J. Math. Phys. 26, 2201–2204 (1985).

[CrossRef]

N. R. Hill, V. Celli, “Limits of convergence of the Rayleigh method for surface scattering,” Phys. Rev. B 17, 2478–2481 (1978).

[CrossRef]

M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, K. M. Ho, “Photonic band gaps and defects in two dimensions: studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).

[CrossRef]

M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, K. M. Ho, “Photonic band gaps and defects in two dimensions: studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).

[CrossRef]

P. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).

[CrossRef]

D. Felbacq, D. Maystre, G. Tayeb, “Localization of light by a set of parallel cylinders,” J. Mod. Opt. 42, 473–482 (1995).

[CrossRef]

D. Felbacq, G. Tayeb, D. Maystre, “Scattering by a random set of parallel cylinders,” J. Opt. Soc. Am. A 11, 2526–2538 (1994).

[CrossRef]

N. R. Hill, V. Celli, “Limits of convergence of the Rayleigh method for surface scattering,” Phys. Rev. B 17, 2478–2481 (1978).

[CrossRef]

M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, K. M. Ho, “Photonic band gaps and defects in two dimensions: studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).

[CrossRef]

J. Joannopoulos, R. Meade, J. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

P. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).

[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

[CrossRef]

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).

[CrossRef]

J. B. Pendry, A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).

[CrossRef]
[PubMed]

T. Baba, T. Matsuzaki, “GaInAsP/InP 2-dimensional photonic crystals,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Scientific Institutes SeriesE. J. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996).

D. Felbacq, D. Maystre, G. Tayeb, “Localization of light by a set of parallel cylinders,” J. Mod. Opt. 42, 473–482 (1995).

[CrossRef]

D. Maystre, “Electromagnetic study of photonic band gaps,” Pure Appl. Opt. 3, 975–993 (1994).

[CrossRef]

D. Felbacq, G. Tayeb, D. Maystre, “Scattering by a random set of parallel cylinders,” J. Opt. Soc. Am. A 11, 2526–2538 (1994).

[CrossRef]

D. Maystre, M. Cadilhac, “Singularities of the continuation of the fields and validity of Rayleigh’s hypothesis,” J. Math. Phys. 26, 2201–2204 (1985).

[CrossRef]

D. R. Smith, S. Schultz, S. L. McCall, P. M. Platzmann, “Defect studies in a two-dimensional periodic photonic lattice,” J. Mod. Opt. 41, 395–404 (1994).

[CrossRef]

J. Joannopoulos, R. Meade, J. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

[CrossRef]

J. B. Pendry, A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).

[CrossRef]
[PubMed]

D. R. Smith, S. Schultz, S. L. McCall, P. M. Platzmann, “Defect studies in a two-dimensional periodic photonic lattice,” J. Mod. Opt. 41, 395–404 (1994).

[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

[CrossRef]

D. R. Smith, S. Schultz, S. L. McCall, P. M. Platzmann, “Defect studies in a two-dimensional periodic photonic lattice,” J. Mod. Opt. 41, 395–404 (1994).

[CrossRef]

M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, K. M. Ho, “Photonic band gaps and defects in two dimensions: studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).

[CrossRef]

D. R. Smith, S. Schultz, S. L. McCall, P. M. Platzmann, “Defect studies in a two-dimensional periodic photonic lattice,” J. Mod. Opt. 41, 395–404 (1994).

[CrossRef]

M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, K. M. Ho, “Photonic band gaps and defects in two dimensions: studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).

[CrossRef]

M. Abramovitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).

D. Felbacq, D. Maystre, G. Tayeb, “Localization of light by a set of parallel cylinders,” J. Mod. Opt. 42, 473–482 (1995).

[CrossRef]

D. Felbacq, G. Tayeb, D. Maystre, “Scattering by a random set of parallel cylinders,” J. Opt. Soc. Am. A 11, 2526–2538 (1994).

[CrossRef]

P. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).

[CrossRef]

J. Joannopoulos, R. Meade, J. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

E. Yablonovitch, “Photonic crystals,” J. Mod. Opt. 41, 173–194 (1994).

[CrossRef]

D. Maystre, M. Cadilhac, “Singularities of the continuation of the fields and validity of Rayleigh’s hypothesis,” J. Math. Phys. 26, 2201–2204 (1985).

[CrossRef]

D. Felbacq, D. Maystre, G. Tayeb, “Localization of light by a set of parallel cylinders,” J. Mod. Opt. 42, 473–482 (1995).

[CrossRef]

E. Yablonovitch, “Photonic crystals,” J. Mod. Opt. 41, 173–194 (1994).

[CrossRef]

D. R. Smith, S. Schultz, S. L. McCall, P. M. Platzmann, “Defect studies in a two-dimensional periodic photonic lattice,” J. Mod. Opt. 41, 395–404 (1994).

[CrossRef]

N. R. Hill, V. Celli, “Limits of convergence of the Rayleigh method for surface scattering,” Phys. Rev. B 17, 2478–2481 (1978).

[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

[CrossRef]

M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, K. M. Ho, “Photonic band gaps and defects in two dimensions: studies of the transmission coefficient,” Phys. Rev. B 48, 14121–14126 (1993).

[CrossRef]

P. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).

[CrossRef]

J. B. Pendry, A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992).

[CrossRef]
[PubMed]

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).

[CrossRef]

D. Maystre, “Electromagnetic study of photonic band gaps,” Pure Appl. Opt. 3, 975–993 (1994).

[CrossRef]

T. Baba, T. Matsuzaki, “GaInAsP/InP 2-dimensional photonic crystals,” in Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO Advanced Scientific Institutes SeriesE. J. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996).

J. Joannopoulos, R. Meade, J. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

M. Abramovitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).