Abstract

A two-dimensional fast Fourier transform technique is proposed for accelerating the computation of scattering characteristics of features on surfaces by using the discrete-dipole approximation. The two-dimensional fast Fourier transform reduces the CPU execution time dependence on the number of dipoles N from O(N2) to O(N log N). The capabilities and flexibility of a discrete-dipole code implementing the technique are demonstrated with scattering results from circuit features on surfaces.

© 1997 Optical Society of America

Full Article  |  PDF Article
Related Articles
Discrete-Dipole Approximation For Scattering Calculations

Bruce T. Draine and Piotr J. Flatau
J. Opt. Soc. Am. A 11(4) 1491-1499 (1994)

Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the Block–Toeplitz structure

Piotr J. Flatau, Bruce T. Draine, and Graeme L. Stephens
J. Opt. Soc. Am. A 7(4) 593-600 (1990)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (55)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription