Abstract

Even when corrected with the best spectacles or contact lenses, normal human eyes still suffer from monochromatic aberrations that blur vision when the pupil is large. We have successfully corrected these aberrations using adaptive optics, providing normal eyes with supernormal optical quality. Contrast sensitivity to fine spatial patterns was increased when observers viewed stimuli through adaptive optics. The eye's aberrations also limit the resolution of images of the retina, a limit that has existed since the invention of the ophthalmoscope. We have constructed a fundus camera equipped with adaptive optics that provides unprecedented resolution, allowing the imaging of microscopic structures the size of single cells in the living human retina.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. von Helmholtz, Popular Scientific Lectures, M. Kline, ed. (Dover, New York, 1962).
  2. G. T. Cashell, “A short history of spectacles,” Proc. R. Soc. Med. 64, 1063–1064 (1971).
    [PubMed]
  3. M. L. Rubin, “Spectacles: past, present and future,” Surv. Ophthalmol. 30, 321–327 (1986).
    [CrossRef] [PubMed]
  4. H. von Helmholtz, Helmholtz's Treatise on Physiological Optics, J. P. C. Southall, ed. (Optical Society of America, New York, 1924).
  5. M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. J. 7, 766–795 (1962).
  6. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrationsof the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
    [CrossRef] [PubMed]
  7. G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrationsof the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
    [CrossRef] [PubMed]
  8. J. Liang, B. Grimm, S. Goelz, J. Bille, “Objective measurement of the wave aberrations of the human eye withthe use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  9. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  10. Y. L. Grand, “Sur la mesure de l'acuite visuelle au moyen de franges d'interférence,” Acad. Sci. 200, 490–491 (1935).
  11. G. Westheimer, “Modulation thresholds for sinusoidal light distributions on the retina,” J. Physiol. (London) 152, 67–74 (1960).
  12. F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).
  13. D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
    [CrossRef] [PubMed]
  14. T. Young, “On the mechanism of the eye,” Philos. Trans. R. Soc. London 91, 23–88 (1801).
    [CrossRef]
  15. D. Bartsch, G. Zinser, W. R. Freeman, “Resolution improvement of confocal scanning laser tomography of the human fundus,” Vision Science and Its Applications, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 134–137.
  16. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
    [CrossRef]
  17. J. W. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).
    [CrossRef]
  18. R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered lightfrom a laser guide-star,” Nature 352, 144–146 (1991).
    [CrossRef]
  19. F. Merkle, in International Trends in Optics, J. Goodman, ed. (Academic, San Diego, Calif., 1991).
  20. R. K. Tyson, Principles of Adaptive Optics (Academic, San Diego, Calif., 1991).
  21. A. W. Dreher, J. F. Bille, R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographicscanner,” Appl. Opt. 24, 804–808 (1989).
    [CrossRef]
  22. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998–1006 (1980).
    [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  24. W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at differentpoints,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
    [CrossRef]
  25. J. Enoch, V. Lakshminarayanan, “Retinal fibre optics,” in Visual Optics and Instrumentation, W. N. Charman, ed., Vol. 1 of Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (CRC, Boca Raton, Fla., 1991), Chap. 12.
  26. American National Standards Institute, American National Standard for the Safe Use of Lasers, (Laser Institute of America, Orlando, Fla., 1993).
  27. S. Marcos, R. Navarro, P. Artal, “Coherent imaging of the cone mosaic in the living human eye,” J. Opt. Soc. Am. A 13, 897–905 (1996).
    [CrossRef]
  28. D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of the cone mosaic in the living human eye,” Vision Res. 36, 1067–1079 (1996).
    [CrossRef] [PubMed]
  29. J. I. Yellott, “Spectral analysis of spatial sampling by photoreceptors: topologicaldisorder prevents aliasing,” Vision Res. 22, 1205–1210 (1982).
    [CrossRef]
  30. J. Hardy, “Instrumental limitation in adaptive optics for astronomy,” in Active Telescope Systems, F. J. Roddier, ed., Proc. SPIE1114, 2–13 (1989).
    [CrossRef]
  31. C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
    [CrossRef] [PubMed]
  32. R. E. Bedford, G. W. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
    [CrossRef] [PubMed]
  33. A. W. Snyder, T. R. J. Bossomaier, A. Hughes, “Optical image quality and the cone mosaic,” Science 231, 499–501 (1986).
    [CrossRef] [PubMed]
  34. D. R. Williams, N. Sekiguchi, W. Haake, D. H. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in Pigments to Perception, B. B. Lee, A. Valberg, eds. (Plenum, New York, 1991), pp. 11–22.
  35. F. Holmgren, Uber den Farbensinn (Compt Rendu du Congres International de Science et Medecine, Copenhagen, 1884), Vol. 1.
  36. J. Krauskopf, R. Srebro, “Spectral sensitivity of color mechanisms: derivation from fluctuationsof color appearance near threshold,” Science 150, 1477–1479 (1965).
    [CrossRef] [PubMed]
  37. A. W. Snyder, “Hyperacuity and interpolation by the visual pathways,” Vision Res. 22, 1219–1220 (1982).
    [CrossRef] [PubMed]
  38. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. (Bellingham) 21, 829–932 (1982).
    [CrossRef]
  39. R. G. Paxman, J. H. Seldin, M. G. Lofdahl, G. B. Scharmer, C. U. Keller, “Evaluation of phase diversity techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099 (1996).
    [CrossRef]
  40. S. Inoue, R. Oldenbourg, “Microscopes,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), pp. 17.1–17.52.
  41. A. F. Fercher, K. Mengedoht, W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Opt. Lett. 13, 186–188 (1988).
    [CrossRef] [PubMed]
  42. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]

1997

1996

S. Marcos, R. Navarro, P. Artal, “Coherent imaging of the cone mosaic in the living human eye,” J. Opt. Soc. Am. A 13, 897–905 (1996).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of the cone mosaic in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

R. G. Paxman, J. H. Seldin, M. G. Lofdahl, G. B. Scharmer, C. U. Keller, “Evaluation of phase diversity techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099 (1996).
[CrossRef]

1994

1991

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered lightfrom a laser guide-star,” Nature 352, 144–146 (1991).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1990

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

1989

1988

1986

A. W. Snyder, T. R. J. Bossomaier, A. Hughes, “Optical image quality and the cone mosaic,” Science 231, 499–501 (1986).
[CrossRef] [PubMed]

M. L. Rubin, “Spectacles: past, present and future,” Surv. Ophthalmol. 30, 321–327 (1986).
[CrossRef] [PubMed]

1985

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
[CrossRef] [PubMed]

1984

1982

J. I. Yellott, “Spectral analysis of spatial sampling by photoreceptors: topologicaldisorder prevents aliasing,” Vision Res. 22, 1205–1210 (1982).
[CrossRef]

A. W. Snyder, “Hyperacuity and interpolation by the visual pathways,” Vision Res. 22, 1219–1220 (1982).
[CrossRef] [PubMed]

R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. (Bellingham) 21, 829–932 (1982).
[CrossRef]

1980

1978

J. W. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).
[CrossRef]

1977

1971

G. T. Cashell, “A short history of spectacles,” Proc. R. Soc. Med. 64, 1063–1064 (1971).
[PubMed]

1965

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

J. Krauskopf, R. Srebro, “Spectral sensitivity of color mechanisms: derivation from fluctuationsof color appearance near threshold,” Science 150, 1477–1479 (1965).
[CrossRef] [PubMed]

1962

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. J. 7, 766–795 (1962).

1960

G. Westheimer, “Modulation thresholds for sinusoidal light distributions on the retina,” J. Physiol. (London) 152, 67–74 (1960).

1957

1953

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

1935

Y. L. Grand, “Sur la mesure de l'acuite visuelle au moyen de franges d'interférence,” Acad. Sci. 200, 490–491 (1935).

1933

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at differentpoints,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

1801

T. Young, “On the mechanism of the eye,” Philos. Trans. R. Soc. London 91, 23–88 (1801).
[CrossRef]

Ameer, G. A.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered lightfrom a laser guide-star,” Nature 352, 144–146 (1991).
[CrossRef]

Artal, P.

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Bartsch, D.

D. Bartsch, G. Zinser, W. R. Freeman, “Resolution improvement of confocal scanning laser tomography of the human fundus,” Vision Science and Its Applications, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 134–137.

Bedford, R. E.

Bille, J.

Bille, J. F.

Boeke, B. R.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered lightfrom a laser guide-star,” Nature 352, 144–146 (1991).
[CrossRef]

Bossomaier, T. R. J.

A. W. Snyder, T. R. J. Bossomaier, A. Hughes, “Optical image quality and the cone mosaic,” Science 231, 499–501 (1986).
[CrossRef] [PubMed]

Brainard, D. H.

D. R. Williams, N. Sekiguchi, W. Haake, D. H. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in Pigments to Perception, B. B. Lee, A. Valberg, eds. (Plenum, New York, 1991), pp. 11–22.

Browne, S. L.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered lightfrom a laser guide-star,” Nature 352, 144–146 (1991).
[CrossRef]

Campbell, F. W.

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

Cashell, G. T.

G. T. Cashell, “A short history of spectacles,” Proc. R. Soc. Med. 64, 1063–1064 (1971).
[PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Charman, W. N.

Crawford, B. H.

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at differentpoints,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Dreher, A. W.

Enoch, J.

J. Enoch, V. Lakshminarayanan, “Retinal fibre optics,” in Visual Optics and Instrumentation, W. N. Charman, ed., Vol. 1 of Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (CRC, Boca Raton, Fla., 1991), Chap. 12.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Freeman, W. R.

D. Bartsch, G. Zinser, W. R. Freeman, “Resolution improvement of confocal scanning laser tomography of the human fundus,” Vision Science and Its Applications, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 134–137.

Fried, D. L.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered lightfrom a laser guide-star,” Nature 352, 144–146 (1991).
[CrossRef]

Fugate, R. Q.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered lightfrom a laser guide-star,” Nature 352, 144–146 (1991).
[CrossRef]

Fujimoto, J.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Goelz, S.

Gonsalves, R. A.

R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. (Bellingham) 21, 829–932 (1982).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

Grand, Y. L.

Y. L. Grand, “Sur la mesure de l'acuite visuelle au moyen de franges d'interférence,” Acad. Sci. 200, 490–491 (1935).

Green, D. G.

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Grimm, B.

Haake, W.

D. R. Williams, N. Sekiguchi, W. Haake, D. H. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in Pigments to Perception, B. B. Lee, A. Valberg, eds. (Plenum, New York, 1991), pp. 11–22.

Hardy, J.

J. Hardy, “Instrumental limitation in adaptive optics for astronomy,” in Active Telescope Systems, F. J. Roddier, ed., Proc. SPIE1114, 2–13 (1989).
[CrossRef]

Hardy, J. W.

J. W. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).
[CrossRef]

Hee, M.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Holmgren, F.

F. Holmgren, Uber den Farbensinn (Compt Rendu du Congres International de Science et Medecine, Copenhagen, 1884), Vol. 1.

Howland, B.

Howland, H. C.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hughes, A.

A. W. Snyder, T. R. J. Bossomaier, A. Hughes, “Optical image quality and the cone mosaic,” Science 231, 499–501 (1986).
[CrossRef] [PubMed]

Inoue, S.

S. Inoue, R. Oldenbourg, “Microscopes,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), pp. 17.1–17.52.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Keller, C. U.

R. G. Paxman, J. H. Seldin, M. G. Lofdahl, G. B. Scharmer, C. U. Keller, “Evaluation of phase diversity techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099 (1996).
[CrossRef]

Krauskopf, J.

J. Krauskopf, R. Srebro, “Spectral sensitivity of color mechanisms: derivation from fluctuationsof color appearance near threshold,” Science 150, 1477–1479 (1965).
[CrossRef] [PubMed]

Lakshminarayanan, V.

J. Enoch, V. Lakshminarayanan, “Retinal fibre optics,” in Visual Optics and Instrumentation, W. N. Charman, ed., Vol. 1 of Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (CRC, Boca Raton, Fla., 1991), Chap. 12.

Liang, J.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lofdahl, M. G.

R. G. Paxman, J. H. Seldin, M. G. Lofdahl, G. B. Scharmer, C. U. Keller, “Evaluation of phase diversity techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099 (1996).
[CrossRef]

Marcos, S.

Mengedoht, K.

Merkle, F.

F. Merkle, in International Trends in Optics, J. Goodman, ed. (Academic, San Diego, Calif., 1991).

Miller, D. T.

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of the cone mosaic in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Morris, G. M.

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of the cone mosaic in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Navarro, R.

Oldenbourg, R.

S. Inoue, R. Oldenbourg, “Microscopes,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), pp. 17.1–17.52.

Packer, O.

D. R. Williams, N. Sekiguchi, W. Haake, D. H. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in Pigments to Perception, B. B. Lee, A. Valberg, eds. (Plenum, New York, 1991), pp. 11–22.

Paxman, R. G.

R. G. Paxman, J. H. Seldin, M. G. Lofdahl, G. B. Scharmer, C. U. Keller, “Evaluation of phase diversity techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099 (1996).
[CrossRef]

Puliafito, C.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Roberts, P. H.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered lightfrom a laser guide-star,” Nature 352, 144–146 (1991).
[CrossRef]

Ruane, R. E.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered lightfrom a laser guide-star,” Nature 352, 144–146 (1991).
[CrossRef]

Rubin, M. L.

M. L. Rubin, “Spectacles: past, present and future,” Surv. Ophthalmol. 30, 321–327 (1986).
[CrossRef] [PubMed]

Scharmer, G. B.

R. G. Paxman, J. H. Seldin, M. G. Lofdahl, G. B. Scharmer, C. U. Keller, “Evaluation of phase diversity techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099 (1996).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sekiguchi, N.

D. R. Williams, N. Sekiguchi, W. Haake, D. H. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in Pigments to Perception, B. B. Lee, A. Valberg, eds. (Plenum, New York, 1991), pp. 11–22.

Seldin, J. H.

R. G. Paxman, J. H. Seldin, M. G. Lofdahl, G. B. Scharmer, C. U. Keller, “Evaluation of phase diversity techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099 (1996).
[CrossRef]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Smirnov, M. S.

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. J. 7, 766–795 (1962).

Snyder, A. W.

A. W. Snyder, T. R. J. Bossomaier, A. Hughes, “Optical image quality and the cone mosaic,” Science 231, 499–501 (1986).
[CrossRef] [PubMed]

A. W. Snyder, “Hyperacuity and interpolation by the visual pathways,” Vision Res. 22, 1219–1220 (1982).
[CrossRef] [PubMed]

Southwell, W. H.

Srebro, R.

J. Krauskopf, R. Srebro, “Spectral sensitivity of color mechanisms: derivation from fluctuationsof color appearance near threshold,” Science 150, 1477–1479 (1965).
[CrossRef] [PubMed]

Stiles, W. S.

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at differentpoints,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tyler, G. A.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered lightfrom a laser guide-star,” Nature 352, 144–146 (1991).
[CrossRef]

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics (Academic, San Diego, Calif., 1991).

von Helmholtz, H.

H. von Helmholtz, Popular Scientific Lectures, M. Kline, ed. (Dover, New York, 1962).

H. von Helmholtz, Helmholtz's Treatise on Physiological Optics, J. P. C. Southall, ed. (Optical Society of America, New York, 1924).

Walsh, G.

Weinreb, R. N.

Werner, W.

Westheimer, G.

G. Westheimer, “Modulation thresholds for sinusoidal light distributions on the retina,” J. Physiol. (London) 152, 67–74 (1960).

Williams, D. R.

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of the cone mosaic in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
[CrossRef] [PubMed]

D. R. Williams, N. Sekiguchi, W. Haake, D. H. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in Pigments to Perception, B. B. Lee, A. Valberg, eds. (Plenum, New York, 1991), pp. 11–22.

Wopat, L. M.

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered lightfrom a laser guide-star,” Nature 352, 144–146 (1991).
[CrossRef]

Wyszecki, G. W.

Yellott, J. I.

J. I. Yellott, “Spectral analysis of spatial sampling by photoreceptors: topologicaldisorder prevents aliasing,” Vision Res. 22, 1205–1210 (1982).
[CrossRef]

Young, T.

T. Young, “On the mechanism of the eye,” Philos. Trans. R. Soc. London 91, 23–88 (1801).
[CrossRef]

Zinser, G.

D. Bartsch, G. Zinser, W. R. Freeman, “Resolution improvement of confocal scanning laser tomography of the human fundus,” Vision Science and Its Applications, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 134–137.

Acad. Sci.

Y. L. Grand, “Sur la mesure de l'acuite visuelle au moyen de franges d'interférence,” Acad. Sci. 200, 490–491 (1935).

Appl. Opt.

Astrophys. J.

R. G. Paxman, J. H. Seldin, M. G. Lofdahl, G. B. Scharmer, C. U. Keller, “Evaluation of phase diversity techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099 (1996).
[CrossRef]

Biophys. J.

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. J. 7, 766–795 (1962).

J. Comp. Neurol.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Physiol. (London)

G. Westheimer, “Modulation thresholds for sinusoidal light distributions on the retina,” J. Physiol. (London) 152, 67–74 (1960).

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

Nature

R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Boeke, S. L. Browne, P. H. Roberts, R. E. Ruane, G. A. Tyler, L. M. Wopat, “Measurement of atmospheric wavefront distortion using scattered lightfrom a laser guide-star,” Nature 352, 144–146 (1991).
[CrossRef]

Opt. Eng. (Bellingham)

R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. (Bellingham) 21, 829–932 (1982).
[CrossRef]

Opt. Lett.

Philos. Trans. R. Soc. London

T. Young, “On the mechanism of the eye,” Philos. Trans. R. Soc. London 91, 23–88 (1801).
[CrossRef]

Proc. IEEE

J. W. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).
[CrossRef]

Proc. R. Soc. London Ser. B

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at differentpoints,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

Proc. R. Soc. Med.

G. T. Cashell, “A short history of spectacles,” Proc. R. Soc. Med. 64, 1063–1064 (1971).
[PubMed]

Publ. Astron. Soc. Pac.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Science

A. W. Snyder, T. R. J. Bossomaier, A. Hughes, “Optical image quality and the cone mosaic,” Science 231, 499–501 (1986).
[CrossRef] [PubMed]

J. Krauskopf, R. Srebro, “Spectral sensitivity of color mechanisms: derivation from fluctuationsof color appearance near threshold,” Science 150, 1477–1479 (1965).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Surv. Ophthalmol.

M. L. Rubin, “Spectacles: past, present and future,” Surv. Ophthalmol. 30, 321–327 (1986).
[CrossRef] [PubMed]

Vision Res.

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195–205 (1985).
[CrossRef] [PubMed]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of the cone mosaic in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

J. I. Yellott, “Spectral analysis of spatial sampling by photoreceptors: topologicaldisorder prevents aliasing,” Vision Res. 22, 1205–1210 (1982).
[CrossRef]

A. W. Snyder, “Hyperacuity and interpolation by the visual pathways,” Vision Res. 22, 1219–1220 (1982).
[CrossRef] [PubMed]

Other

S. Inoue, R. Oldenbourg, “Microscopes,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), pp. 17.1–17.52.

D. R. Williams, N. Sekiguchi, W. Haake, D. H. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in Pigments to Perception, B. B. Lee, A. Valberg, eds. (Plenum, New York, 1991), pp. 11–22.

F. Holmgren, Uber den Farbensinn (Compt Rendu du Congres International de Science et Medecine, Copenhagen, 1884), Vol. 1.

J. Enoch, V. Lakshminarayanan, “Retinal fibre optics,” in Visual Optics and Instrumentation, W. N. Charman, ed., Vol. 1 of Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (CRC, Boca Raton, Fla., 1991), Chap. 12.

American National Standards Institute, American National Standard for the Safe Use of Lasers, (Laser Institute of America, Orlando, Fla., 1993).

J. Hardy, “Instrumental limitation in adaptive optics for astronomy,” in Active Telescope Systems, F. J. Roddier, ed., Proc. SPIE1114, 2–13 (1989).
[CrossRef]

D. Bartsch, G. Zinser, W. R. Freeman, “Resolution improvement of confocal scanning laser tomography of the human fundus,” Vision Science and Its Applications, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 134–137.

H. von Helmholtz, Helmholtz's Treatise on Physiological Optics, J. P. C. Southall, ed. (Optical Society of America, New York, 1924).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

F. Merkle, in International Trends in Optics, J. Goodman, ed. (Academic, San Diego, Calif., 1991).

R. K. Tyson, Principles of Adaptive Optics (Academic, San Diego, Calif., 1991).

H. von Helmholtz, Popular Scientific Lectures, M. Kline, ed. (Dover, New York, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Potential improvement in the eye's MTF by correction of the eye's high-order aberrations. Shown is the best MTF of the eye in normal viewing, obtained with a 3-mm pupil averaged across 14 eyes,9 with an optimal correction of defocus and astigmatism, and the ideal MTF of the eye for an 8-mm pupil blurred only by diffraction. The shaded region shows the range of contrasts and spatial frequencies that are inaccessible both for the case of imaging patterns on the retina and for the case of imaging the retina outside the eye.

Fig. 2
Fig. 2

Optical system. Wave-front sensing and adaptive compensation . The eye focused a collimated laser beam onto the retina. The light reflected from the retina formed an aberrated wave front at the pupil. The distorted wave front is measured by a Hartmann–Shack wave-front sensor. A deformable mirror, conjugate with the pupil, compensated for the eye's wave aberration. After compensation was achieved, psychophysical or retinal imaging experiments were performed with a 6-mm pupil. Observations of point sources. The point source from the wave-front sensor, attenuated to ∼8 × detection threshold, was fixated through the compensated optics. Contrast sensitivity. A square-wave grating was viewed by insertion of a mirror in the path. Contrast sensitivity was measured with the method of adjustment by diluting contrast with a uniform background at constant retinal illuminance. Retinal imaging . A krypton flash lamp delivered a 4-ms flash, illuminating a retinal disk 1 deg in diameter. A scientific-grade CCD acquired images of the retina. Retinal location was controlled with a fixation target.

Fig. 3
Fig. 3

Geometry of the 217 lenslets of the Hartmann–Shack wave-front sensor (open circles) and the location of the 37 actuators (filled circles) of the deformable mirror. The lenslet array and the mirror are shown imaged in the entrance pupil of the eye. The numbers in parentheses indicate the physical spacing of the actuators and the lenslets.

Fig. 4
Fig. 4

Wave aberration for two eyes (JL and DM) without and with adaptive compensation for a 6-mm pupil. For the uncompensated case, trial lenses were used to correct the astigmatism. According to the wave-front-sensor measurements, the astigmatism left uncorrected by the trial lenses is 0.28 D and 0.27 D for JL and DM, respectively. Defocus of the eye was corrected with trial lenses so that the highest-contrast images of the retina were obtained when the deformable mirror was flat.

Fig. 5
Fig. 5

RMS wave-front error of the eye before and after compensation with adaptive optics (AO). The result is averaged from measurements for four subjects. The abscissa is the Zernike order of the Zernike expansion. 9 The second-order Zernike aberrations are for defocus and astigmatism, the third-order for coma and comalike aberrations, and the fourth-order for spherical and other aberrations. The higher-order (beyond fourth-order) modes are irregular aberrations.

Fig. 6
Fig. 6

PSF of the eye for subjects JL and DM without and with adaptive compensation for a 6-mm pupil. The PSF's were computed from the corresponding wave aberrations shown in Fig. 4.

Fig. 7
Fig. 7

Eye's radially averaged modulation transfer function for subjects JL and DM without and with adaptive compensation for a 6-mm pupil. The eye's MTF's were calculated from the wave aberrations shown in Fig. 4.

Fig. 8
Fig. 8

Mean MTF's of the four tested eyes before and after adaptive compensation, together with the eye's MTF for a 3-mm pupil, which is presumably the best MTF with a conventional correction. The MTF's were derived from the truncated wave aberration measured with the wave-front sensor within a 6.76-mm pupil.

Fig. 9
Fig. 9

Contrast-sensitivity measurement for two eyes (JL and DRW) for a horizontal grating of 27.5 and 55 c/deg with and without adaptive compensation.

Fig. 10
Fig. 10

Image from DM's retina at 0.8-deg eccentricity without (a.) and with (b.) adaptive compensation for a 6-mm pupil. Each image is a 20-arc-min square or approximately 96 × 96   μ m 2 at the retina. The power spectra of the images in a. and b. are shown in c. and d., respectively. In the compensated power spectrum in d., the ring of power at 86   c / deg indicates the sampling frequency of the photoreceptors at this retinal location. e. and f. show bandpass-filtered images without and with compensation, respectively. A Butterworth filter, chosen to remove high-spatial-frequency noise and to enhance contrast, passed frequencies between 0.1 and 1.2 times the sampling frequency of cones determined from the power spectrum. For comparative purposes, the contrast ratio between the two filtered images was set to that of the original images in a. and b.  

Fig. 11
Fig. 11

Image of the retina at 4-deg eccentricity for subject DM without adaptive compensation (a.) and with adaptive compensation (b.) Each image subtends 1   deg or 291 μm at the retina. From the power spectrum of the compensated image, the mean sampling frequency was estimated at 46 c/deg. The images shown have been bandpass filtered, passing frequencies from 5 to 60 c/deg.

Fig. 12
Fig. 12

Images of the cone mosaic from subject JL's eye obtained with adaptive compensation at the foveal center (a.), at 1-deg eccentricity (b.), and at 4-deg eccentricity (c.) in the temporal retina, showing the decline in cone density with retinal eccentricity. Each image subtends 13.3 arc min or 64 μm at the retina. The images have been bandpass filtered as in Fig. 3. The sampling frequencies were 110, 73, and 46 c/deg for 0, 1, and 4 deg, respectively, corresponding to row spacings of 2.6, 3.9, and 6.3 μm. Similar data were obtained for DM, whose row spacings were 2.6, 3.4, and 6.4 μm for 0, 1, and 4 deg, respectively.

Metrics