Abstract

We have constructed a wave-front sensor to measure the irregular as well as the classical aberrations of the eye, providing a more complete description of the eye's aberrations than has previously been possible. We show that the wave-front sensor provides repeatable and accurate measurements of the eye's wave aberration. The modulation transfer function of the eye computed from the wave-front sensor is in fair, though not complete, agreement with that obtained under similar conditions on the same observers by use of the double-pass and the interferometric techniques. Irregular aberrations, i.e., those beyond defocus, astigmatism, coma, and spherical aberration, do not have a large effect on retinal image quality in normal eyes when the pupil is small (3 mm). However, they play a substantial role when the pupil is large (7.3-mm), reducing visual performance and the resolution of images of the living retina. Although the pattern of aberrations varies from subject to subject, aberrations, including irregular ones, are correlated in left and right eyes of the same subject, indicating that they are not random defects.

© 1997 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Rosenblum, J. L. Christensen, “Objective and subjective spherical aberration measurement of the human eye,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1976), Vol. 13, pp. 69–91.
  2. M. C. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to opticalaberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
    [CrossRef]
  3. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrationsof the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
    [CrossRef] [PubMed]
  4. G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrationsof the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
    [CrossRef] [PubMed]
  5. H. von Helmholtz, Physiological Optics, J. P. C. Southall, ed. (Dover, New York, 1896).
  6. F. Berny, S. Slansky, “Wavefront determination resulting from foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel, Newcastle, UK, 1969), pp. 375–386.
  7. G. Van den Brink, “Measurements of the geometrical aberrations of the eye,” Vision Res. 2, 233–244 (1962).
    [CrossRef]
  8. H. C. Howland, J. Buettner, “Computing high order wave aberration coefficients from variations ofbest focus for small artificial pupils,” Vision Res. 29, 979–983 (1989).
    [CrossRef]
  9. J. Liang, B. Grimm, S. Goelz, J. Bille, “Objective measurement of the wave aberrations of the human eye withthe use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  10. B. Platt, R. V. Shack, “Lenticular Hartmann screen,” Opt. Sci. Center Newsl. (University of Arizona) 5, 15–16 (1971).
  11. D. H. Sliney, M. L. Wolbarsht, “Safety standards and measurement techniques for high intensity lightsources,” Vision Res. 20, 1133–1142 (1980).
    [CrossRef]
  12. D. R. Williams, D. H. Brainard, M. J. McMahon, R. Navarro, “Double-pass and interferometric measures of the optical quality ofthe eye,” J. Opt. Soc. Am. A 11, 3123–3135 (1994).
    [CrossRef]
  13. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. A 70, 998–1006 (1980).
    [CrossRef]
  14. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1983).
  15. W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at differentpoints,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
    [CrossRef]
  16. J. Enoch, V. Lakshminarayanan, “Retinal fibre optics,” in Visual Optics and Instrumentation, W. N. Charman, ed., Vol. 1 of Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (CRC, Boca Raton, Fla., 1991), Chap. 12.
  17. G. Westheimer, “Dependence of the magnitude of the Stiles–Crawford effect onretinal location,” J. Physiol. (London) 192, 309–315 (1967).
  18. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptiveoptics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  19. G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
    [CrossRef] [PubMed]
  20. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  21. We have also calculated the eye's MTF, incorporating the Stiles–Crawford effect (ρ=0.05). The MTF is increased slightly at lower frequencies but is reduced at higher frequencies; nevertheless, the Stiles–Crawford effect does not substantially change our conclusions.
  22. F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).
  23. F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).
  24. G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthalmic. Physiol. Opt. 5, 23–31 (1985).
    [CrossRef] [PubMed]
  25. F. Flamant, “Etude de la repartition de lumière dans l'image rétinienned'une fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).
  26. G. Westheimer, F. W. Campbell, “Light distribution in the image formed by the living human eye,” J. Opt. Soc. Am. 52, 1040–1044 (1962).
    [CrossRef] [PubMed]
  27. P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
    [CrossRef]
  28. W. N. Charman, G. Walsh, “The optical phase transfer function of the eye and the perception ofspatial phase,” Vision Res. 25, 619–623 (1985).
    [CrossRef]
  29. M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. J. 7, 766–795 (1962).
  30. R. H. Webb, C. M. Penney, K. P. Thompson, “Measurement of ocular wave-front distortion with a spatially resolvedrefractometer,” Appl. Opt. 31, 3678–3686 (1992).
    [CrossRef] [PubMed]
  31. W. N. Charman, “Wave aberration of the eye: a review,” Optom. Vis. Sci. 68, 574–583 (1991).
    [CrossRef] [PubMed]
  32. R. A. Applegate, C. A. Johnson, H. C. Howland, R. W. Yee, “Monochromatic wavefront aberrations following radial keratotomy,” in Noninvasive Assessment of Visual System, Vol. 7 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 98–102.
  33. R. A. Applegate, K. A. Gansel, “The importance of pupil size in optical quality measurements following radial keratotomy,” Refract. Corneal Surg. 6, 47–54 (1990).
    [PubMed]
  34. D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of the cone mosaic in the living human eye,” Vision Res. 36, 1067–1079 (1996).
    [CrossRef] [PubMed]

1997 (1)

1996 (1)

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of the cone mosaic in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (2)

1992 (1)

1991 (1)

W. N. Charman, “Wave aberration of the eye: a review,” Optom. Vis. Sci. 68, 574–583 (1991).
[CrossRef] [PubMed]

1990 (2)

R. A. Applegate, K. A. Gansel, “The importance of pupil size in optical quality measurements following radial keratotomy,” Refract. Corneal Surg. 6, 47–54 (1990).
[PubMed]

M. C. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to opticalaberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef]

1989 (1)

H. C. Howland, J. Buettner, “Computing high order wave aberration coefficients from variations ofbest focus for small artificial pupils,” Vision Res. 29, 979–983 (1989).
[CrossRef]

1988 (1)

G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
[CrossRef] [PubMed]

1985 (2)

W. N. Charman, G. Walsh, “The optical phase transfer function of the eye and the perception ofspatial phase,” Vision Res. 25, 619–623 (1985).
[CrossRef]

G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthalmic. Physiol. Opt. 5, 23–31 (1985).
[CrossRef] [PubMed]

1984 (1)

1980 (2)

D. H. Sliney, M. L. Wolbarsht, “Safety standards and measurement techniques for high intensity lightsources,” Vision Res. 20, 1133–1142 (1980).
[CrossRef]

W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. A 70, 998–1006 (1980).
[CrossRef]

1977 (1)

1971 (1)

B. Platt, R. V. Shack, “Lenticular Hartmann screen,” Opt. Sci. Center Newsl. (University of Arizona) 5, 15–16 (1971).

1967 (1)

G. Westheimer, “Dependence of the magnitude of the Stiles–Crawford effect onretinal location,” J. Physiol. (London) 192, 309–315 (1967).

1966 (1)

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

1965 (1)

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

1962 (3)

G. Van den Brink, “Measurements of the geometrical aberrations of the eye,” Vision Res. 2, 233–244 (1962).
[CrossRef]

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. J. 7, 766–795 (1962).

G. Westheimer, F. W. Campbell, “Light distribution in the image formed by the living human eye,” J. Opt. Soc. Am. 52, 1040–1044 (1962).
[CrossRef] [PubMed]

1955 (1)

F. Flamant, “Etude de la repartition de lumière dans l'image rétinienned'une fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).

1933 (1)

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at differentpoints,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

Applegate, R. A.

R. A. Applegate, K. A. Gansel, “The importance of pupil size in optical quality measurements following radial keratotomy,” Refract. Corneal Surg. 6, 47–54 (1990).
[PubMed]

R. A. Applegate, C. A. Johnson, H. C. Howland, R. W. Yee, “Monochromatic wavefront aberrations following radial keratotomy,” in Noninvasive Assessment of Visual System, Vol. 7 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 98–102.

Artal, P.

Berny, F.

F. Berny, S. Slansky, “Wavefront determination resulting from foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel, Newcastle, UK, 1969), pp. 375–386.

Bille, J.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1983).

Brainard, D. H.

Buettner, J.

H. C. Howland, J. Buettner, “Computing high order wave aberration coefficients from variations ofbest focus for small artificial pupils,” Vision Res. 29, 979–983 (1989).
[CrossRef]

Campbell, F. W.

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

G. Westheimer, F. W. Campbell, “Light distribution in the image formed by the living human eye,” J. Opt. Soc. Am. 52, 1040–1044 (1962).
[CrossRef] [PubMed]

Campbell, M. C.

M. C. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to opticalaberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef]

Charman, W. N.

W. N. Charman, “Wave aberration of the eye: a review,” Optom. Vis. Sci. 68, 574–583 (1991).
[CrossRef] [PubMed]

G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
[CrossRef] [PubMed]

W. N. Charman, G. Walsh, “The optical phase transfer function of the eye and the perception ofspatial phase,” Vision Res. 25, 619–623 (1985).
[CrossRef]

G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthalmic. Physiol. Opt. 5, 23–31 (1985).
[CrossRef] [PubMed]

G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrationsof the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

Christensen, J. L.

W. M. Rosenblum, J. L. Christensen, “Objective and subjective spherical aberration measurement of the human eye,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1976), Vol. 13, pp. 69–91.

Crawford, B. H.

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at differentpoints,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

Enoch, J.

J. Enoch, V. Lakshminarayanan, “Retinal fibre optics,” in Visual Optics and Instrumentation, W. N. Charman, ed., Vol. 1 of Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (CRC, Boca Raton, Fla., 1991), Chap. 12.

Flamant, F.

F. Flamant, “Etude de la repartition de lumière dans l'image rétinienned'une fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).

Gansel, K. A.

R. A. Applegate, K. A. Gansel, “The importance of pupil size in optical quality measurements following radial keratotomy,” Refract. Corneal Surg. 6, 47–54 (1990).
[PubMed]

Goelz, S.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

Green, D. G.

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

Grimm, B.

Gubisch, R. W.

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

Harrison, E. M.

M. C. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to opticalaberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef]

Howland, B.

Howland, H. C.

H. C. Howland, J. Buettner, “Computing high order wave aberration coefficients from variations ofbest focus for small artificial pupils,” Vision Res. 29, 979–983 (1989).
[CrossRef]

G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrationsof the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrationsof the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
[CrossRef] [PubMed]

R. A. Applegate, C. A. Johnson, H. C. Howland, R. W. Yee, “Monochromatic wavefront aberrations following radial keratotomy,” in Noninvasive Assessment of Visual System, Vol. 7 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 98–102.

Johnson, C. A.

R. A. Applegate, C. A. Johnson, H. C. Howland, R. W. Yee, “Monochromatic wavefront aberrations following radial keratotomy,” in Noninvasive Assessment of Visual System, Vol. 7 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 98–102.

Lakshminarayanan, V.

J. Enoch, V. Lakshminarayanan, “Retinal fibre optics,” in Visual Optics and Instrumentation, W. N. Charman, ed., Vol. 1 of Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (CRC, Boca Raton, Fla., 1991), Chap. 12.

Liang, J.

Marcos, S.

McMahon, M. J.

Miller, D. T.

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptiveoptics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of the cone mosaic in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Morris, G. M.

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of the cone mosaic in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Navarro, R.

Penney, C. M.

Platt, B.

B. Platt, R. V. Shack, “Lenticular Hartmann screen,” Opt. Sci. Center Newsl. (University of Arizona) 5, 15–16 (1971).

Rosenblum, W. M.

W. M. Rosenblum, J. L. Christensen, “Objective and subjective spherical aberration measurement of the human eye,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1976), Vol. 13, pp. 69–91.

Shack, R. V.

B. Platt, R. V. Shack, “Lenticular Hartmann screen,” Opt. Sci. Center Newsl. (University of Arizona) 5, 15–16 (1971).

Simonet, P.

M. C. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to opticalaberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef]

Slansky, S.

F. Berny, S. Slansky, “Wavefront determination resulting from foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel, Newcastle, UK, 1969), pp. 375–386.

Sliney, D. H.

D. H. Sliney, M. L. Wolbarsht, “Safety standards and measurement techniques for high intensity lightsources,” Vision Res. 20, 1133–1142 (1980).
[CrossRef]

Smirnov, M. S.

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. J. 7, 766–795 (1962).

Southwell, W. H.

W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. A 70, 998–1006 (1980).
[CrossRef]

Stiles, W. S.

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at differentpoints,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

Thompson, K. P.

Van den Brink, G.

G. Van den Brink, “Measurements of the geometrical aberrations of the eye,” Vision Res. 2, 233–244 (1962).
[CrossRef]

von Helmholtz, H.

H. von Helmholtz, Physiological Optics, J. P. C. Southall, ed. (Dover, New York, 1896).

Walsh, G.

G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
[CrossRef] [PubMed]

G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthalmic. Physiol. Opt. 5, 23–31 (1985).
[CrossRef] [PubMed]

W. N. Charman, G. Walsh, “The optical phase transfer function of the eye and the perception ofspatial phase,” Vision Res. 25, 619–623 (1985).
[CrossRef]

G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrationsof the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

Webb, R. H.

Westheimer, G.

G. Westheimer, “Dependence of the magnitude of the Stiles–Crawford effect onretinal location,” J. Physiol. (London) 192, 309–315 (1967).

G. Westheimer, F. W. Campbell, “Light distribution in the image formed by the living human eye,” J. Opt. Soc. Am. 52, 1040–1044 (1962).
[CrossRef] [PubMed]

Williams, D. R.

Wolbarsht, M. L.

D. H. Sliney, M. L. Wolbarsht, “Safety standards and measurement techniques for high intensity lightsources,” Vision Res. 20, 1133–1142 (1980).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1983).

Yee, R. W.

R. A. Applegate, C. A. Johnson, H. C. Howland, R. W. Yee, “Monochromatic wavefront aberrations following radial keratotomy,” in Noninvasive Assessment of Visual System, Vol. 7 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 98–102.

Appl. Opt. (1)

Biophys. J. (1)

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. J. 7, 766–795 (1962).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (6)

J. Physiol. (London) (3)

F. W. Campbell, D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576–593 (1965).

F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558–578 (1966).

G. Westheimer, “Dependence of the magnitude of the Stiles–Crawford effect onretinal location,” J. Physiol. (London) 192, 309–315 (1967).

Ophthalmic. Physiol. Opt. (1)

G. Walsh, W. N. Charman, “Measurement of the axial wavefront aberration of the human eye,” Ophthalmic. Physiol. Opt. 5, 23–31 (1985).
[CrossRef] [PubMed]

Opt. Sci. Center Newsl. (University of Arizona) (1)

B. Platt, R. V. Shack, “Lenticular Hartmann screen,” Opt. Sci. Center Newsl. (University of Arizona) 5, 15–16 (1971).

Optom. Vis. Sci. (1)

W. N. Charman, “Wave aberration of the eye: a review,” Optom. Vis. Sci. 68, 574–583 (1991).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. B (1)

W. S. Stiles, B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at differentpoints,” Proc. R. Soc. London Ser. B 112, 428–450 (1933).
[CrossRef]

Refract. Corneal Surg. (1)

R. A. Applegate, K. A. Gansel, “The importance of pupil size in optical quality measurements following radial keratotomy,” Refract. Corneal Surg. 6, 47–54 (1990).
[PubMed]

Rev. Opt. Theor. Instrum. (1)

F. Flamant, “Etude de la repartition de lumière dans l'image rétinienned'une fente,” Rev. Opt. Theor. Instrum. 34, 433–459 (1955).

Vision Res. (7)

D. H. Sliney, M. L. Wolbarsht, “Safety standards and measurement techniques for high intensity lightsources,” Vision Res. 20, 1133–1142 (1980).
[CrossRef]

G. Walsh, W. N. Charman, “The effect of pupil centration and diameter on ocular performance,” Vision Res. 28, 659–665 (1988).
[CrossRef] [PubMed]

G. Van den Brink, “Measurements of the geometrical aberrations of the eye,” Vision Res. 2, 233–244 (1962).
[CrossRef]

H. C. Howland, J. Buettner, “Computing high order wave aberration coefficients from variations ofbest focus for small artificial pupils,” Vision Res. 29, 979–983 (1989).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of the cone mosaic in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

M. C. Campbell, E. M. Harrison, P. Simonet, “Psychophysical measurement of the blur on the retina due to opticalaberrations of the eye,” Vision Res. 30, 1587–1602 (1990).
[CrossRef]

W. N. Charman, G. Walsh, “The optical phase transfer function of the eye and the perception ofspatial phase,” Vision Res. 25, 619–623 (1985).
[CrossRef]

Other (8)

R. A. Applegate, C. A. Johnson, H. C. Howland, R. W. Yee, “Monochromatic wavefront aberrations following radial keratotomy,” in Noninvasive Assessment of Visual System, Vol. 7 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 98–102.

W. M. Rosenblum, J. L. Christensen, “Objective and subjective spherical aberration measurement of the human eye,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1976), Vol. 13, pp. 69–91.

H. von Helmholtz, Physiological Optics, J. P. C. Southall, ed. (Dover, New York, 1896).

F. Berny, S. Slansky, “Wavefront determination resulting from foucault test as applied to the human eye and visual instruments,” in Optical Instruments and Techniques, J. H. Dickenson, ed. (Oriel, Newcastle, UK, 1969), pp. 375–386.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

We have also calculated the eye's MTF, incorporating the Stiles–Crawford effect (ρ=0.05). The MTF is increased slightly at lower frequencies but is reduced at higher frequencies; nevertheless, the Stiles–Crawford effect does not substantially change our conclusions.

J. Enoch, V. Lakshminarayanan, “Retinal fibre optics,” in Visual Optics and Instrumentation, W. N. Charman, ed., Vol. 1 of Vision and Visual Dysfunction, J. Cronly-Dillon, ed. (CRC, Boca Raton, Fla., 1991), Chap. 12.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics