Abstract

Differential ray tracing determines an optical system's first-order properties by finding the first-order changes in the configuration of an exiting ray in terms of changes in that ray's initial configuration. When one or more of the elements of a system is inhomogeneous, the only established procedure for carrying out a first-order analysis of a general ray uses relatively inefficient finite differences. To trace a ray through an inhomogeneous medium, one must, in general, numerically integrate an ordinary differential equation, and Runge–Kutta schemes are well suited to this application. We present an extension of standard Runge–Kutta schemes that gives exact derivatives of the numerically approximated rays.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (102)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription