Abstract

We propose an algorithm that transforms a digitized color image so as to simulate for normal observers the appearance of the image for people who have dichromatic forms of color blindness. The dichromat's color confusions are deduced from colorimetry, and the residual hues in the transformed image are derived from the reports of unilateral dichromats described in the literature. We represent color stimuli as vectors in a three-dimensional LMS space, and the simulation algorithm is expressed in terms of transformations of this space. The algorithm replaces each stimulus by its projection onto a reduced stimulus surface. This surface is defined by a neutral axis and by the LMS locations of those monochromatic stimuli that are perceived as the same hue by normal trichromats and a given type of dichromat. These monochromatic stimuli were a yellow of 575 nm and a blue of 475 nm for the protan and deutan simulations, and a red of 660 nm and a blue–green of 485 nm for the tritan simulation. The operation of the algorithm is demonstrated with a mosaic of square color patches. A protanope and a deuteranope accepted the match between the original and the appropriate image, confirming that the reduction is colorimetrically accurate. Although we can never be certain of another's sensations, the simulation provides a means of quantifying and illustrating the residual color information available to dichromats in any digitized image.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. H. Rushton, “Chemical basis of colour vision and colour blindness,” Nature (London) 206, 1087–1091 (1965).
    [Crossref]
  2. H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments; microspectrophotometric results from the eyesof seven persons,” Proc. R. Soc. London, Ser. B 220, 115–130 (1983).
    [Crossref]
  3. J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue,green and red pigments,” Science 232, 193–202 (1986).
    [Crossref] [PubMed]
  4. J. D. Mollon, J. K. Bowmaker, H. J. A. Dartnall, A. C. Bird, “Microspectrophotometric and psychophysical results for the same deuteranopic observer,”in Colour Vision Deficiencies VII, G. Verriest, ed. (Junk, The Hague, 1984), pp. 303–310.
  5. J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
    [Crossref] [PubMed]
  6. Rayleigh, Report of Committee on Colour-Vision (The Royal Society, London, 1890).
  7. C. Ladd-Franklin, Colour and Colour Theories (Kegan Paul, London, 1932).
  8. R. M. Evans, An Introduction to Color (Wiley, New York, 1948).
  9. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500nm,” Vision Res. 15, 161–171 (1975).
    [Crossref] [PubMed]
  10. J. J. Vos, O. Estévez, P. L. Walraven, “Improved colour fundamentals offer a new view on photometric additivity,” Vision Res. 30, 937–943 (1990).
    [Crossref]
  11. A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
    [Crossref]
  12. D. B. Judd, “Color perceptions of deuteranopic and protanopic observers,” J. Res. Natl. Bur. Stand. 41, 247–271 (1948).
    [Crossref]
  13. K. H. Ruddock, “Psychophysics of inherited colour vision deficiencies,” in Inherited and Acquired Colour Vision Deficiencies: Fundamental Aspects and Clinical Studies, D. H. Foster, ed., Vol. 7 of Vision and Visual Dysfunction (Macmillan, London, 1991), pp. 4–37.
  14. M. Alpern, K. Kitahara, D. H. Krantz, “Perception of colour in unilateral tritanopia,” J. Physiol. (London) 335, 683–697 (1983).
  15. F. Viénot, H. Brettel, L. Ott, A. Ben M'Barek, J. D. Mollon, “What do colour-blind people see?” Nature (London) 376, 127–128 (1995).
    [Crossref]
  16. D. M. Hunt, K. S. Dulai, J. K. Bowmaker, J. D. Mollon, “The chemistry of John Dalton's color blindness,” Science 267, 984–988 (1995).
    [Crossref] [PubMed]
  17. J. D. Mollon, K. S. Dulai, D. M. Hunt, “Dalton's colour blindness: an essay in molecular biography,” in John Dalton's Colour Vision Legacy, C. Dickinson, I. Murray, D. Carden, eds. (Taylor & Francis, London, 1997), pp. 15–33.
  18. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [Crossref] [PubMed]
  19. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  20. W. D. Wright, Researches on Normal and Defective Colour Vision (Kimpton, London, 1946).
  21. M. F. Lyon, “X-chromosome inactivation and developmental patterns in mammals,” Biol. Rev. 47, 1–35 (1972).
    [PubMed]
  22. E. C. de Vries-de Mol, L. N. Went, “Unilateral colour vision disturbance. A family study,” Clin. Genet. 2, 15–27 (1971).
    [PubMed]
  23. R. B. Welch, Perceptual Modification (Academic, New York, 1979).
  24. W. S. Stiles, “Presentation and discussion of papers 21, 25, 35 and 28,” in Visual Problems of Colour, Vol. 2 (Her Majesty's Stationery Office, London, 1958), pp. 631–632.
  25. J. D. Mollon, “A taxonomy of tritanopias,” Doc. Ophthalmol. Proc. Ser. 33, 87–101 (1981).
  26. A. Chapanis, “Spectral saturation and its relation to color-vision defects,” J. Exp. Psychol. 34, 24–44 (1944).
    [Crossref]
  27. B. C. Regan, J. P. Reffin, J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipsesin colour deficiency,” Vision Res. 34, 1279–1299 (1994).
    [Crossref] [PubMed]
  28. W. de W. Abney, “On the change in hue of spectrum colours by dilution with white light,” Proc. R. Soc. London 183, 120–127 (1910).
  29. S. M. Newhall, D. Nickerson, D. B. Judd, “Final report of the O.S.A. subcommittee on spacing of the Munsell colors,” J. Opt. Soc. Am. 33, 345–418 (1943).
    [Crossref]
  30. S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constanthues,” Vision Res. 24, 479–489 (1984).
    [Crossref]
  31. Another example of multiple hue sensations with only bivariant visualinput signals is Edwin Land's two-primary color projections of still-lifepictures, in which also many spatial frequencies were included: E. H. Land, “Experiments in color vision,” Sci. Am. 200, 84–94 (1959);E. H. Land, “Color vision and the natural image,” Proc. Natl. Acad. Sci. USA 45, 115–129 (1959) (Part I);Proc. Natl. Acad. Sci. USA 45, 636–644 (1959) (Part II).
    [Crossref] [PubMed]
  32. A. E. Elsner, S. A. Burns, J. Pokorny, “Changes in constant-hue loci with spatial frequency,” Color Res. Appl. 12, 42–49 (1987).
    [Crossref]
  33. J. Neitz, G. H. Jacobs, “Polymorphism of the long-wavelength cone in normal human colour vision,” Nature (London) 323, 623–625 (1986).
    [Crossref]
  34. J. Winderickx, D. T. Lindsey, E. Sanocki, D. Y. Teller, A. G. Motulsky, S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature (London) 356, 431–433 (1992).
    [Crossref]
  35. S. L. Merbs, J. Nathans, “Absorption spectra of human cone pigments,” Nature (London) 356, 433–435 (1992).
    [Crossref]
  36. M. Alpern, E. N. Pugh, “Variation in the action spectrum of erythrolabe among deuteranopes,” J. Physiol. (London) 266, 613–646 (1977).
  37. M. Alpern, T. Wake, “Cone pigments in human deutan colour vision defects,” J. Physiol. (London) 266, 595–612 (1977).
  38. E. Sanocki, D. T. Lindsey, J. Winderickx, D. Y. Teller, S. S. Deeb, A. G. Motulsky, “Serine/alanine amino acid polymorphism of the L and M cone pigments:effects on Rayleigh matches among deuteranopes, protanopes and color normalobservers,” Vision Res. 33, 2139–2152 (1993).
    [Crossref] [PubMed]
  39. M. Neitz, J. Neitz, G. H. Jacobs, “Genetic basis of photopigment variations in human dichromats,” Vision Res. 35, 2095–2103 (1995).
    [Crossref] [PubMed]

1995 (3)

F. Viénot, H. Brettel, L. Ott, A. Ben M'Barek, J. D. Mollon, “What do colour-blind people see?” Nature (London) 376, 127–128 (1995).
[Crossref]

D. M. Hunt, K. S. Dulai, J. K. Bowmaker, J. D. Mollon, “The chemistry of John Dalton's color blindness,” Science 267, 984–988 (1995).
[Crossref] [PubMed]

M. Neitz, J. Neitz, G. H. Jacobs, “Genetic basis of photopigment variations in human dichromats,” Vision Res. 35, 2095–2103 (1995).
[Crossref] [PubMed]

1994 (1)

B. C. Regan, J. P. Reffin, J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipsesin colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[Crossref] [PubMed]

1993 (2)

A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[Crossref]

E. Sanocki, D. T. Lindsey, J. Winderickx, D. Y. Teller, S. S. Deeb, A. G. Motulsky, “Serine/alanine amino acid polymorphism of the L and M cone pigments:effects on Rayleigh matches among deuteranopes, protanopes and color normalobservers,” Vision Res. 33, 2139–2152 (1993).
[Crossref] [PubMed]

1992 (2)

J. Winderickx, D. T. Lindsey, E. Sanocki, D. Y. Teller, A. G. Motulsky, S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature (London) 356, 431–433 (1992).
[Crossref]

S. L. Merbs, J. Nathans, “Absorption spectra of human cone pigments,” Nature (London) 356, 433–435 (1992).
[Crossref]

1990 (1)

J. J. Vos, O. Estévez, P. L. Walraven, “Improved colour fundamentals offer a new view on photometric additivity,” Vision Res. 30, 937–943 (1990).
[Crossref]

1987 (1)

A. E. Elsner, S. A. Burns, J. Pokorny, “Changes in constant-hue loci with spatial frequency,” Color Res. Appl. 12, 42–49 (1987).
[Crossref]

1986 (3)

J. Neitz, G. H. Jacobs, “Polymorphism of the long-wavelength cone in normal human colour vision,” Nature (London) 323, 623–625 (1986).
[Crossref]

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue,green and red pigments,” Science 232, 193–202 (1986).
[Crossref] [PubMed]

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[Crossref] [PubMed]

1984 (2)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constanthues,” Vision Res. 24, 479–489 (1984).
[Crossref]

1983 (2)

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments; microspectrophotometric results from the eyesof seven persons,” Proc. R. Soc. London, Ser. B 220, 115–130 (1983).
[Crossref]

M. Alpern, K. Kitahara, D. H. Krantz, “Perception of colour in unilateral tritanopia,” J. Physiol. (London) 335, 683–697 (1983).

1981 (1)

J. D. Mollon, “A taxonomy of tritanopias,” Doc. Ophthalmol. Proc. Ser. 33, 87–101 (1981).

1979 (1)

1977 (2)

M. Alpern, E. N. Pugh, “Variation in the action spectrum of erythrolabe among deuteranopes,” J. Physiol. (London) 266, 613–646 (1977).

M. Alpern, T. Wake, “Cone pigments in human deutan colour vision defects,” J. Physiol. (London) 266, 595–612 (1977).

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

1972 (1)

M. F. Lyon, “X-chromosome inactivation and developmental patterns in mammals,” Biol. Rev. 47, 1–35 (1972).
[PubMed]

1971 (1)

E. C. de Vries-de Mol, L. N. Went, “Unilateral colour vision disturbance. A family study,” Clin. Genet. 2, 15–27 (1971).
[PubMed]

1965 (1)

W. A. H. Rushton, “Chemical basis of colour vision and colour blindness,” Nature (London) 206, 1087–1091 (1965).
[Crossref]

1959 (1)

Another example of multiple hue sensations with only bivariant visualinput signals is Edwin Land's two-primary color projections of still-lifepictures, in which also many spatial frequencies were included: E. H. Land, “Experiments in color vision,” Sci. Am. 200, 84–94 (1959);E. H. Land, “Color vision and the natural image,” Proc. Natl. Acad. Sci. USA 45, 115–129 (1959) (Part I);Proc. Natl. Acad. Sci. USA 45, 636–644 (1959) (Part II).
[Crossref] [PubMed]

1948 (1)

D. B. Judd, “Color perceptions of deuteranopic and protanopic observers,” J. Res. Natl. Bur. Stand. 41, 247–271 (1948).
[Crossref]

1944 (1)

A. Chapanis, “Spectral saturation and its relation to color-vision defects,” J. Exp. Psychol. 34, 24–44 (1944).
[Crossref]

1943 (1)

S. M. Newhall, D. Nickerson, D. B. Judd, “Final report of the O.S.A. subcommittee on spacing of the Munsell colors,” J. Opt. Soc. Am. 33, 345–418 (1943).
[Crossref]

1910 (1)

W. de W. Abney, “On the change in hue of spectrum colours by dilution with white light,” Proc. R. Soc. London 183, 120–127 (1910).

Abney, W. de W.

W. de W. Abney, “On the change in hue of spectrum colours by dilution with white light,” Proc. R. Soc. London 183, 120–127 (1910).

Alpern, M.

M. Alpern, K. Kitahara, D. H. Krantz, “Perception of colour in unilateral tritanopia,” J. Physiol. (London) 335, 683–697 (1983).

M. Alpern, E. N. Pugh, “Variation in the action spectrum of erythrolabe among deuteranopes,” J. Physiol. (London) 266, 613–646 (1977).

M. Alpern, T. Wake, “Cone pigments in human deutan colour vision defects,” J. Physiol. (London) 266, 595–612 (1977).

Ben M'Barek, A.

F. Viénot, H. Brettel, L. Ott, A. Ben M'Barek, J. D. Mollon, “What do colour-blind people see?” Nature (London) 376, 127–128 (1995).
[Crossref]

Bird, A. C.

J. D. Mollon, J. K. Bowmaker, H. J. A. Dartnall, A. C. Bird, “Microspectrophotometric and psychophysical results for the same deuteranopic observer,”in Colour Vision Deficiencies VII, G. Verriest, ed. (Junk, The Hague, 1984), pp. 303–310.

Bowmaker, J. K.

D. M. Hunt, K. S. Dulai, J. K. Bowmaker, J. D. Mollon, “The chemistry of John Dalton's color blindness,” Science 267, 984–988 (1995).
[Crossref] [PubMed]

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments; microspectrophotometric results from the eyesof seven persons,” Proc. R. Soc. London, Ser. B 220, 115–130 (1983).
[Crossref]

J. D. Mollon, J. K. Bowmaker, H. J. A. Dartnall, A. C. Bird, “Microspectrophotometric and psychophysical results for the same deuteranopic observer,”in Colour Vision Deficiencies VII, G. Verriest, ed. (Junk, The Hague, 1984), pp. 303–310.

Boynton, R. M.

Brettel, H.

F. Viénot, H. Brettel, L. Ott, A. Ben M'Barek, J. D. Mollon, “What do colour-blind people see?” Nature (London) 376, 127–128 (1995).
[Crossref]

Burns, S. A.

A. E. Elsner, S. A. Burns, J. Pokorny, “Changes in constant-hue loci with spatial frequency,” Color Res. Appl. 12, 42–49 (1987).
[Crossref]

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constanthues,” Vision Res. 24, 479–489 (1984).
[Crossref]

Chapanis, A.

A. Chapanis, “Spectral saturation and its relation to color-vision defects,” J. Exp. Psychol. 34, 24–44 (1944).
[Crossref]

Dartnall, H. J. A.

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments; microspectrophotometric results from the eyesof seven persons,” Proc. R. Soc. London, Ser. B 220, 115–130 (1983).
[Crossref]

J. D. Mollon, J. K. Bowmaker, H. J. A. Dartnall, A. C. Bird, “Microspectrophotometric and psychophysical results for the same deuteranopic observer,”in Colour Vision Deficiencies VII, G. Verriest, ed. (Junk, The Hague, 1984), pp. 303–310.

de Vries-de Mol, E. C.

E. C. de Vries-de Mol, L. N. Went, “Unilateral colour vision disturbance. A family study,” Clin. Genet. 2, 15–27 (1971).
[PubMed]

Deeb, S. S.

E. Sanocki, D. T. Lindsey, J. Winderickx, D. Y. Teller, S. S. Deeb, A. G. Motulsky, “Serine/alanine amino acid polymorphism of the L and M cone pigments:effects on Rayleigh matches among deuteranopes, protanopes and color normalobservers,” Vision Res. 33, 2139–2152 (1993).
[Crossref] [PubMed]

J. Winderickx, D. T. Lindsey, E. Sanocki, D. Y. Teller, A. G. Motulsky, S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature (London) 356, 431–433 (1992).
[Crossref]

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Dulai, K. S.

D. M. Hunt, K. S. Dulai, J. K. Bowmaker, J. D. Mollon, “The chemistry of John Dalton's color blindness,” Science 267, 984–988 (1995).
[Crossref] [PubMed]

J. D. Mollon, K. S. Dulai, D. M. Hunt, “Dalton's colour blindness: an essay in molecular biography,” in John Dalton's Colour Vision Legacy, C. Dickinson, I. Murray, D. Carden, eds. (Taylor & Francis, London, 1997), pp. 15–33.

Eddy, R. L.

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[Crossref] [PubMed]

Elsner, A. E.

A. E. Elsner, S. A. Burns, J. Pokorny, “Changes in constant-hue loci with spatial frequency,” Color Res. Appl. 12, 42–49 (1987).
[Crossref]

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constanthues,” Vision Res. 24, 479–489 (1984).
[Crossref]

Estévez, O.

J. J. Vos, O. Estévez, P. L. Walraven, “Improved colour fundamentals offer a new view on photometric additivity,” Vision Res. 30, 937–943 (1990).
[Crossref]

Evans, R. M.

R. M. Evans, An Introduction to Color (Wiley, New York, 1948).

Hogness, D. S.

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[Crossref] [PubMed]

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue,green and red pigments,” Science 232, 193–202 (1986).
[Crossref] [PubMed]

Hunt, D. M.

D. M. Hunt, K. S. Dulai, J. K. Bowmaker, J. D. Mollon, “The chemistry of John Dalton's color blindness,” Science 267, 984–988 (1995).
[Crossref] [PubMed]

J. D. Mollon, K. S. Dulai, D. M. Hunt, “Dalton's colour blindness: an essay in molecular biography,” in John Dalton's Colour Vision Legacy, C. Dickinson, I. Murray, D. Carden, eds. (Taylor & Francis, London, 1997), pp. 15–33.

Jacobs, G. H.

M. Neitz, J. Neitz, G. H. Jacobs, “Genetic basis of photopigment variations in human dichromats,” Vision Res. 35, 2095–2103 (1995).
[Crossref] [PubMed]

J. Neitz, G. H. Jacobs, “Polymorphism of the long-wavelength cone in normal human colour vision,” Nature (London) 323, 623–625 (1986).
[Crossref]

Johnson, N. E.

Judd, D. B.

D. B. Judd, “Color perceptions of deuteranopic and protanopic observers,” J. Res. Natl. Bur. Stand. 41, 247–271 (1948).
[Crossref]

S. M. Newhall, D. Nickerson, D. B. Judd, “Final report of the O.S.A. subcommittee on spacing of the Munsell colors,” J. Opt. Soc. Am. 33, 345–418 (1943).
[Crossref]

Kitahara, K.

M. Alpern, K. Kitahara, D. H. Krantz, “Perception of colour in unilateral tritanopia,” J. Physiol. (London) 335, 683–697 (1983).

Krantz, D. H.

M. Alpern, K. Kitahara, D. H. Krantz, “Perception of colour in unilateral tritanopia,” J. Physiol. (London) 335, 683–697 (1983).

Krauskopf, J.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Ladd-Franklin, C.

C. Ladd-Franklin, Colour and Colour Theories (Kegan Paul, London, 1932).

Land, E. H.

Another example of multiple hue sensations with only bivariant visualinput signals is Edwin Land's two-primary color projections of still-lifepictures, in which also many spatial frequencies were included: E. H. Land, “Experiments in color vision,” Sci. Am. 200, 84–94 (1959);E. H. Land, “Color vision and the natural image,” Proc. Natl. Acad. Sci. USA 45, 115–129 (1959) (Part I);Proc. Natl. Acad. Sci. USA 45, 636–644 (1959) (Part II).
[Crossref] [PubMed]

Lennie, P.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Lindsey, D. T.

E. Sanocki, D. T. Lindsey, J. Winderickx, D. Y. Teller, S. S. Deeb, A. G. Motulsky, “Serine/alanine amino acid polymorphism of the L and M cone pigments:effects on Rayleigh matches among deuteranopes, protanopes and color normalobservers,” Vision Res. 33, 2139–2152 (1993).
[Crossref] [PubMed]

J. Winderickx, D. T. Lindsey, E. Sanocki, D. Y. Teller, A. G. Motulsky, S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature (London) 356, 431–433 (1992).
[Crossref]

Lyon, M. F.

M. F. Lyon, “X-chromosome inactivation and developmental patterns in mammals,” Biol. Rev. 47, 1–35 (1972).
[PubMed]

MacLeod, D. I. A.

Merbs, S. L.

S. L. Merbs, J. Nathans, “Absorption spectra of human cone pigments,” Nature (London) 356, 433–435 (1992).
[Crossref]

Mollon, J. D.

D. M. Hunt, K. S. Dulai, J. K. Bowmaker, J. D. Mollon, “The chemistry of John Dalton's color blindness,” Science 267, 984–988 (1995).
[Crossref] [PubMed]

F. Viénot, H. Brettel, L. Ott, A. Ben M'Barek, J. D. Mollon, “What do colour-blind people see?” Nature (London) 376, 127–128 (1995).
[Crossref]

B. C. Regan, J. P. Reffin, J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipsesin colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[Crossref] [PubMed]

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments; microspectrophotometric results from the eyesof seven persons,” Proc. R. Soc. London, Ser. B 220, 115–130 (1983).
[Crossref]

J. D. Mollon, “A taxonomy of tritanopias,” Doc. Ophthalmol. Proc. Ser. 33, 87–101 (1981).

J. D. Mollon, K. S. Dulai, D. M. Hunt, “Dalton's colour blindness: an essay in molecular biography,” in John Dalton's Colour Vision Legacy, C. Dickinson, I. Murray, D. Carden, eds. (Taylor & Francis, London, 1997), pp. 15–33.

J. D. Mollon, J. K. Bowmaker, H. J. A. Dartnall, A. C. Bird, “Microspectrophotometric and psychophysical results for the same deuteranopic observer,”in Colour Vision Deficiencies VII, G. Verriest, ed. (Junk, The Hague, 1984), pp. 303–310.

Motulsky, A. G.

E. Sanocki, D. T. Lindsey, J. Winderickx, D. Y. Teller, S. S. Deeb, A. G. Motulsky, “Serine/alanine amino acid polymorphism of the L and M cone pigments:effects on Rayleigh matches among deuteranopes, protanopes and color normalobservers,” Vision Res. 33, 2139–2152 (1993).
[Crossref] [PubMed]

J. Winderickx, D. T. Lindsey, E. Sanocki, D. Y. Teller, A. G. Motulsky, S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature (London) 356, 431–433 (1992).
[Crossref]

Nathans, J.

S. L. Merbs, J. Nathans, “Absorption spectra of human cone pigments,” Nature (London) 356, 433–435 (1992).
[Crossref]

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue,green and red pigments,” Science 232, 193–202 (1986).
[Crossref] [PubMed]

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[Crossref] [PubMed]

Neitz, J.

M. Neitz, J. Neitz, G. H. Jacobs, “Genetic basis of photopigment variations in human dichromats,” Vision Res. 35, 2095–2103 (1995).
[Crossref] [PubMed]

J. Neitz, G. H. Jacobs, “Polymorphism of the long-wavelength cone in normal human colour vision,” Nature (London) 323, 623–625 (1986).
[Crossref]

Neitz, M.

M. Neitz, J. Neitz, G. H. Jacobs, “Genetic basis of photopigment variations in human dichromats,” Vision Res. 35, 2095–2103 (1995).
[Crossref] [PubMed]

Newhall, S. M.

S. M. Newhall, D. Nickerson, D. B. Judd, “Final report of the O.S.A. subcommittee on spacing of the Munsell colors,” J. Opt. Soc. Am. 33, 345–418 (1943).
[Crossref]

Nickerson, D.

S. M. Newhall, D. Nickerson, D. B. Judd, “Final report of the O.S.A. subcommittee on spacing of the Munsell colors,” J. Opt. Soc. Am. 33, 345–418 (1943).
[Crossref]

Ott, L.

F. Viénot, H. Brettel, L. Ott, A. Ben M'Barek, J. D. Mollon, “What do colour-blind people see?” Nature (London) 376, 127–128 (1995).
[Crossref]

Piantanida, T. P.

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[Crossref] [PubMed]

Pokorny, J.

A. E. Elsner, S. A. Burns, J. Pokorny, “Changes in constant-hue loci with spatial frequency,” Color Res. Appl. 12, 42–49 (1987).
[Crossref]

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constanthues,” Vision Res. 24, 479–489 (1984).
[Crossref]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Pugh, E. N.

M. Alpern, E. N. Pugh, “Variation in the action spectrum of erythrolabe among deuteranopes,” J. Physiol. (London) 266, 613–646 (1977).

Rayleigh,

Rayleigh, Report of Committee on Colour-Vision (The Royal Society, London, 1890).

Reffin, J. P.

B. C. Regan, J. P. Reffin, J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipsesin colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[Crossref] [PubMed]

Regan, B. C.

B. C. Regan, J. P. Reffin, J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipsesin colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[Crossref] [PubMed]

Ruddock, K. H.

K. H. Ruddock, “Psychophysics of inherited colour vision deficiencies,” in Inherited and Acquired Colour Vision Deficiencies: Fundamental Aspects and Clinical Studies, D. H. Foster, ed., Vol. 7 of Vision and Visual Dysfunction (Macmillan, London, 1991), pp. 4–37.

Rushton, W. A. H.

W. A. H. Rushton, “Chemical basis of colour vision and colour blindness,” Nature (London) 206, 1087–1091 (1965).
[Crossref]

Sanocki, E.

E. Sanocki, D. T. Lindsey, J. Winderickx, D. Y. Teller, S. S. Deeb, A. G. Motulsky, “Serine/alanine amino acid polymorphism of the L and M cone pigments:effects on Rayleigh matches among deuteranopes, protanopes and color normalobservers,” Vision Res. 33, 2139–2152 (1993).
[Crossref] [PubMed]

J. Winderickx, D. T. Lindsey, E. Sanocki, D. Y. Teller, A. G. Motulsky, S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature (London) 356, 431–433 (1992).
[Crossref]

Shows, T. B.

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[Crossref] [PubMed]

Smith, V. C.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constanthues,” Vision Res. 24, 479–489 (1984).
[Crossref]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Stiles, W. S.

W. S. Stiles, “Presentation and discussion of papers 21, 25, 35 and 28,” in Visual Problems of Colour, Vol. 2 (Her Majesty's Stationery Office, London, 1958), pp. 631–632.

Stockman, A.

Teller, D. Y.

E. Sanocki, D. T. Lindsey, J. Winderickx, D. Y. Teller, S. S. Deeb, A. G. Motulsky, “Serine/alanine amino acid polymorphism of the L and M cone pigments:effects on Rayleigh matches among deuteranopes, protanopes and color normalobservers,” Vision Res. 33, 2139–2152 (1993).
[Crossref] [PubMed]

J. Winderickx, D. T. Lindsey, E. Sanocki, D. Y. Teller, A. G. Motulsky, S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature (London) 356, 431–433 (1992).
[Crossref]

Thomas, D.

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue,green and red pigments,” Science 232, 193–202 (1986).
[Crossref] [PubMed]

Viénot, F.

F. Viénot, H. Brettel, L. Ott, A. Ben M'Barek, J. D. Mollon, “What do colour-blind people see?” Nature (London) 376, 127–128 (1995).
[Crossref]

Vos, J. J.

J. J. Vos, O. Estévez, P. L. Walraven, “Improved colour fundamentals offer a new view on photometric additivity,” Vision Res. 30, 937–943 (1990).
[Crossref]

Wake, T.

M. Alpern, T. Wake, “Cone pigments in human deutan colour vision defects,” J. Physiol. (London) 266, 595–612 (1977).

Walraven, P. L.

J. J. Vos, O. Estévez, P. L. Walraven, “Improved colour fundamentals offer a new view on photometric additivity,” Vision Res. 30, 937–943 (1990).
[Crossref]

Welch, R. B.

R. B. Welch, Perceptual Modification (Academic, New York, 1979).

Went, L. N.

E. C. de Vries-de Mol, L. N. Went, “Unilateral colour vision disturbance. A family study,” Clin. Genet. 2, 15–27 (1971).
[PubMed]

Winderickx, J.

E. Sanocki, D. T. Lindsey, J. Winderickx, D. Y. Teller, S. S. Deeb, A. G. Motulsky, “Serine/alanine amino acid polymorphism of the L and M cone pigments:effects on Rayleigh matches among deuteranopes, protanopes and color normalobservers,” Vision Res. 33, 2139–2152 (1993).
[Crossref] [PubMed]

J. Winderickx, D. T. Lindsey, E. Sanocki, D. Y. Teller, A. G. Motulsky, S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature (London) 356, 431–433 (1992).
[Crossref]

Wright, W. D.

W. D. Wright, Researches on Normal and Defective Colour Vision (Kimpton, London, 1946).

Biol. Rev. (1)

M. F. Lyon, “X-chromosome inactivation and developmental patterns in mammals,” Biol. Rev. 47, 1–35 (1972).
[PubMed]

Clin. Genet. (1)

E. C. de Vries-de Mol, L. N. Went, “Unilateral colour vision disturbance. A family study,” Clin. Genet. 2, 15–27 (1971).
[PubMed]

Color Res. Appl. (1)

A. E. Elsner, S. A. Burns, J. Pokorny, “Changes in constant-hue loci with spatial frequency,” Color Res. Appl. 12, 42–49 (1987).
[Crossref]

Doc. Ophthalmol. Proc. Ser. (1)

J. D. Mollon, “A taxonomy of tritanopias,” Doc. Ophthalmol. Proc. Ser. 33, 87–101 (1981).

J. Exp. Psychol. (1)

A. Chapanis, “Spectral saturation and its relation to color-vision defects,” J. Exp. Psychol. 34, 24–44 (1944).
[Crossref]

J. Opt. Soc. Am. (2)

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[Crossref] [PubMed]

S. M. Newhall, D. Nickerson, D. B. Judd, “Final report of the O.S.A. subcommittee on spacing of the Munsell colors,” J. Opt. Soc. Am. 33, 345–418 (1943).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Physiol. (London) (4)

M. Alpern, K. Kitahara, D. H. Krantz, “Perception of colour in unilateral tritanopia,” J. Physiol. (London) 335, 683–697 (1983).

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

M. Alpern, E. N. Pugh, “Variation in the action spectrum of erythrolabe among deuteranopes,” J. Physiol. (London) 266, 613–646 (1977).

M. Alpern, T. Wake, “Cone pigments in human deutan colour vision defects,” J. Physiol. (London) 266, 595–612 (1977).

J. Res. Natl. Bur. Stand. (1)

D. B. Judd, “Color perceptions of deuteranopic and protanopic observers,” J. Res. Natl. Bur. Stand. 41, 247–271 (1948).
[Crossref]

Nature (London) (5)

F. Viénot, H. Brettel, L. Ott, A. Ben M'Barek, J. D. Mollon, “What do colour-blind people see?” Nature (London) 376, 127–128 (1995).
[Crossref]

W. A. H. Rushton, “Chemical basis of colour vision and colour blindness,” Nature (London) 206, 1087–1091 (1965).
[Crossref]

J. Neitz, G. H. Jacobs, “Polymorphism of the long-wavelength cone in normal human colour vision,” Nature (London) 323, 623–625 (1986).
[Crossref]

J. Winderickx, D. T. Lindsey, E. Sanocki, D. Y. Teller, A. G. Motulsky, S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature (London) 356, 431–433 (1992).
[Crossref]

S. L. Merbs, J. Nathans, “Absorption spectra of human cone pigments,” Nature (London) 356, 433–435 (1992).
[Crossref]

Proc. R. Soc. London (1)

W. de W. Abney, “On the change in hue of spectrum colours by dilution with white light,” Proc. R. Soc. London 183, 120–127 (1910).

Proc. R. Soc. London, Ser. B (1)

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments; microspectrophotometric results from the eyesof seven persons,” Proc. R. Soc. London, Ser. B 220, 115–130 (1983).
[Crossref]

Sci. Am. (1)

Another example of multiple hue sensations with only bivariant visualinput signals is Edwin Land's two-primary color projections of still-lifepictures, in which also many spatial frequencies were included: E. H. Land, “Experiments in color vision,” Sci. Am. 200, 84–94 (1959);E. H. Land, “Color vision and the natural image,” Proc. Natl. Acad. Sci. USA 45, 115–129 (1959) (Part I);Proc. Natl. Acad. Sci. USA 45, 636–644 (1959) (Part II).
[Crossref] [PubMed]

Science (3)

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue,green and red pigments,” Science 232, 193–202 (1986).
[Crossref] [PubMed]

J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203–210 (1986).
[Crossref] [PubMed]

D. M. Hunt, K. S. Dulai, J. K. Bowmaker, J. D. Mollon, “The chemistry of John Dalton's color blindness,” Science 267, 984–988 (1995).
[Crossref] [PubMed]

Vision Res. (6)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone pigments between 400 and 500nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

J. J. Vos, O. Estévez, P. L. Walraven, “Improved colour fundamentals offer a new view on photometric additivity,” Vision Res. 30, 937–943 (1990).
[Crossref]

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constanthues,” Vision Res. 24, 479–489 (1984).
[Crossref]

B. C. Regan, J. P. Reffin, J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipsesin colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[Crossref] [PubMed]

E. Sanocki, D. T. Lindsey, J. Winderickx, D. Y. Teller, S. S. Deeb, A. G. Motulsky, “Serine/alanine amino acid polymorphism of the L and M cone pigments:effects on Rayleigh matches among deuteranopes, protanopes and color normalobservers,” Vision Res. 33, 2139–2152 (1993).
[Crossref] [PubMed]

M. Neitz, J. Neitz, G. H. Jacobs, “Genetic basis of photopigment variations in human dichromats,” Vision Res. 35, 2095–2103 (1995).
[Crossref] [PubMed]

Other (9)

W. D. Wright, Researches on Normal and Defective Colour Vision (Kimpton, London, 1946).

R. B. Welch, Perceptual Modification (Academic, New York, 1979).

W. S. Stiles, “Presentation and discussion of papers 21, 25, 35 and 28,” in Visual Problems of Colour, Vol. 2 (Her Majesty's Stationery Office, London, 1958), pp. 631–632.

K. H. Ruddock, “Psychophysics of inherited colour vision deficiencies,” in Inherited and Acquired Colour Vision Deficiencies: Fundamental Aspects and Clinical Studies, D. H. Foster, ed., Vol. 7 of Vision and Visual Dysfunction (Macmillan, London, 1991), pp. 4–37.

J. D. Mollon, K. S. Dulai, D. M. Hunt, “Dalton's colour blindness: an essay in molecular biography,” in John Dalton's Colour Vision Legacy, C. Dickinson, I. Murray, D. Carden, eds. (Taylor & Francis, London, 1997), pp. 15–33.

Rayleigh, Report of Committee on Colour-Vision (The Royal Society, London, 1890).

C. Ladd-Franklin, Colour and Colour Theories (Kegan Paul, London, 1932).

R. M. Evans, An Introduction to Color (Wiley, New York, 1948).

J. D. Mollon, J. K. Bowmaker, H. J. A. Dartnall, A. C. Bird, “Microspectrophotometric and psychophysical results for the same deuteranopic observer,”in Colour Vision Deficiencies VII, G. Verriest, ed. (Junk, The Hague, 1984), pp. 303–310.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Geometric representation of the algorithm to simulate dichromatic vision. The axes L, M, and S represent the quantum catch for each of the three classes of cones. The limits of the parallelepiped define the gamut of color stimuli that could be obtained on the video monitor used for the simulation. W represents the nominal White stimulus obtained with Red, Green, and Blue video channel signals at maximum. E represents the brightest possible metamer of an equal-energy stimulus on this monitor. The line OE represents the neutral stimuli for dichromats as well as for normal trichromatic observers. (a) The wings from OE toward the 475-nm and 575-nm locations represent the reduced stimuli surface for protanopic and deuteranopic simulation; (b) the wings from OE toward 485 nm and 660 nm represent the reduced stimuli surface for tritanopic simulation. The simulation algorithm consists in replacing the physiologically undetermined component by the corresponding values on the respective reduced stimuli surface. This is illustrated for a given color stimulus Q, which is replaced by Qp for the protanope, by Qd for the deuteranope, and by Qt for the tritanope.

Fig. 2
Fig. 2

Parallel projections of the video monitor gamut limits and reduced stimuli surfaces along (a) the L axis as for the protanopic simulation, (b) the M axis as for the deuteranopic simulation, and (c) the S axis as for the tritanopic simulation. The shaded wings in (a) and (b) go toward 475 nm and 575 nm, and the wings in (c) go toward 485 nm and 660 nm.  

Fig. 3
Fig. 3

Reproduction of the video monitor display demonstrating the application of the simulation algorithm to a mosaic of randomly chosen color patches. Part (a) is the original, and simulations are given of how (a) is seen by (b) a protanope, (c) a deuteranope, and (d) a tritanope. (A colorimetrically exact reproduction of the video display cannot be guaranteed in the printed version.)

Tables (1)

Tables Icon

Table 1 LMS Tristimulus Values for the Red, Green, and Blue Primaries and Nominal White for the Hitachi Model CM2086A3SG Monitor with the Respective Pixel Values at Maximum a

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

LQ=kφQ(λ)l¯(λ)dλ,
MQ=kφQ(λ)m¯(λ)dλ,
SQ=kφQ(λ)s¯(λ)dλ.
Q=RQPR+GQPG+BQPB,
Q=LQMQSQ,Pi=LiMiSi(i=R, G, B).
(LQMQSQ)Q=[LRLGLBMRMGMB SRSGSB]T(RQGQBQ)V.
V=T-1Q,
(E×A)Q=0,
aLQ+bMQ+cSQ=0,
a=MESA-SEMA,
b=SELA-LESA,
c=LEMA-MELA.
LQ=-(bMQ+cSQ)/a,
MQ=MQ,
SQ=SQ,
LQ=LQ,
MQ=-(aLQ+cSQ)/b,
SQ=SQ;
LQ=LQ,
MQ=MQ,
SQ=-(aLQ+bMQ)/c.
protanopicsimulation:ifSQ/MQ<SE/ME,thenλA=575 nm;elseλA=475 nm;deuteranopicsimulation:ifSQ/LQ<SE/LE,thenλA=575 nm;elseλA=475 nm;tritanopicsimulation:ifMQ/LQ<ME/LE,thenλA=660 nm;elseλA=485 nm,
l(λ)=0.68273×10c5(λ),
m(λ)=0.35235×10c6(λ),
s(λ)=1.00000×10c7(λ).
l¯(λ)=l(λ)/λ[l(λ)+m(λ)],
m¯(λ)=m(λ)/λ[l(λ)+m(λ)],
s¯(λ)=s(λ)/λs(λ),

Metrics