Abstract

For a visual system to possess color constancy across varying illumination, chromatic signals from a scene must remain constant at some neural stage. We found that photoreceptor and opponent-color signals from a large sample of natural and man-made objects under one kind of natural daylight were almost perfectly correlated with the signals from those objects under every other spectrally different phase of daylight. Consequently, in scenes consisting of many objects, the effect of illumination changes on specific color mechanisms can be simulated by shifting all chromaticities by an additive or multiplicative constant along a theoretical axis. When the effect of the illuminant change was restricted to specific color mechanisms, thresholds for detecting a change in the colors in a scene were significantly elevated in the presence of spatial variations along the same chromatic axis as the simulated chromaticity shift. In a variegated scene, correlations between spatially local chromatic signals across illuminants, and the desensitization caused by eye movements across spatial variations, help the visual system to attenuate the perceptual effects that are due to changes in illumination.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Ives, , “The relation between the color of the illuminant and the color of theilluminated object,” Trans. Illum. Eng. Soc. 7, 62–72 (1912) [reprinted in Color Res. Appl. 20, 70–75 (1995)].
    [CrossRef]
  2. J. L. Dannemiller, “Rank ordering of photoreceptors catches from objects are nearly illuminationinvariant,” Vision Res. 33, 131–137 (1993).
    [CrossRef] [PubMed]
  3. D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 250, 116–121 (1994).
  4. J. Krauskopf, D. R. Williams, D. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
    [CrossRef] [PubMed]
  5. L. Maloney, B. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
    [CrossRef] [PubMed]
  6. M. D'Zmura, G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectraldescriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993).
    [CrossRef]
  7. M. D'Zmura, G. Iverson, “Color constancy. II. Results for two-stage linear recovery of spectraldescriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2166–2180 (1993).
    [CrossRef]
  8. D. Judd, , “Hue, saturation and lightness of surface colors with chromatic illumination,” J. Opt. Soc. Am. 30, 2–32 (1940).
    [CrossRef]
  9. E. Land, “Recent advances in retinex theory and some implications for corticalcomputations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
    [CrossRef]
  10. G. West, M. H. Brill, “Necessary and sufficient conditions for Von Kries chromatic adaptationto give color constancy,” J. Math. Biol. 15, 249–258 (1982).
    [CrossRef]
  11. J. Worthey, “Limitations of color constancy,” J. Opt. Soc. Am. A 2, 1014–1026 (1985).
    [CrossRef]
  12. D. H. Brainard, B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
    [CrossRef] [PubMed]
  13. J. L. Dannemiller, “Computational approaches to color constancy: adaptive and ontogeneticconsiderations,” Psychol. Rev. 96, 255–266 (1989).
    [CrossRef] [PubMed]
  14. M. H. Brill, “Image segmentation by object color: a unifying framework and connectionto color constancy,” J. Opt. Soc. Am. A 7, 2041–2049 (1990).
    [CrossRef] [PubMed]
  15. A. Valberg, B. Lange-Malecki, “ `Colour constancy' in Mondrian patterns: a partial cancellationof physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
    [CrossRef]
  16. J. H. van Hateren, “Spatial, temporal and spectral pre-processing for colour vision,” Proc. R. Soc. London, Ser. B 251, 61–68 (1993).
    [CrossRef]
  17. G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: enhancing Von Kries adaptation via sensor transformations,” in Human Vision, Visual Processing, and Digital Display IV, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE1913, 473–484 (1993).
    [CrossRef]
  18. G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
    [CrossRef]
  19. G. D. Finlayson, B. V. Funt, “Coefficient channels: derivation and relationship to other theoreticalstudies,” Color Res. Appl. 21, 87–96 (1996).
    [CrossRef]
  20. G. Monge, , “Memoire sur quelques phenomenes de la vision,” Ann. Chim. (Paris) 3, 131–147 (1789).
  21. J. Walraven, T. L. Benzshawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.
  22. M. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).
  23. A. H. Taylor, G. P. Kerr, “The distribution of energy in the visible spectrum of daylight,” J. Opt. Soc. Am. 31, 3 (1941).
    [CrossRef]
  24. J. A. Endler, “The color of light in forests and its implications,” Ecol. Monogr. 63, 1–27 (1993).
  25. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and700 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  26. J. R. Jordan, W. S. Geisler, A. C. Bovik, “Color as a source of information in the stereo correspondence process,” Vision Res. 30, 1955–1970 (1990).
    [CrossRef] [PubMed]
  27. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  28. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. A 69, 1183–1186 (1979).
    [CrossRef]
  29. Q. Zaidi, “Parallel and serial connections between human color mechanisms,” in Applications of Parallel Processing in Vision, J. R. Brannan, ed. (Elsevier, New York, 1992), pp. 227–259.
  30. W. Sachtler, Q. Zaidi, “Chromatic and luminance signals in visual memory,” J. Opt. Soc. Am. A 9, 877–894 (1992).
    [CrossRef] [PubMed]
  31. E. L. Krinov, “Spectral'naye otrazhatel'naya sposobnost' orirodnykh obrazovani,” Izv. Akad. Nauk USSR (Proc. Acad. Sci. USSR) (1947); translation by G. Belkov, “Spectral reflectance properties of natural formations,” (National Research Council of Canada, Ottawa, Canada, 1953).
  32. L. Maloney, “Evaluation of linear models of surface spectral reflectance with smallnumbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986).
    [CrossRef] [PubMed]
  33. H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).
  34. E. Land, J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
    [CrossRef] [PubMed]
  35. J. McCann, S. McKee, T. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
    [CrossRef]
  36. L. E. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
    [CrossRef] [PubMed]
  37. B. J. Craven, D. H. Foster, “An operational approach to colour constancy,” Vision Res. 32, 1359–1366 (1992).
    [CrossRef] [PubMed]
  38. M. D'Zmura, A. Mangalick, “Detection of contrary chromatic change,” J. Opt. Soc. Am. A 11, 543–546 (1994).
    [CrossRef]
  39. D. H. Brainard, J. M. Speigle, “Achromatic loci measured under realistic viewing conditions,” Invest. Ophthalmol. Visual Sci. 35, 1328 (1994).
  40. A. Shapiro, Q. Zaidi, D. Hood, “Adaptation in the red–green (L–M) color system,” Invest. Ophthalmol. Visual Sci. Suppl. 31, 262 (1990).
  41. M. M. Hayhoe, P. Wenderoth, “Adaptation mechanisms in color and brightness,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 353–367.
  42. Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
    [CrossRef] [PubMed]
  43. R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateralgeniculate nucleus,” Nature (London) 356, 716–718 (1992).
    [CrossRef]
  44. N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).
  45. R. H. S. Carpenter, Movements of the Eyes (Pion, London, 1988).
  46. M. D'Zmura, P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
    [CrossRef] [PubMed]
  47. M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
    [CrossRef] [PubMed]
  48. Q. Zaidi, A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
    [CrossRef] [PubMed]
  49. J. Krauskopf, Q. Zaidi, “Spatial factors in desensitization along cardinal directions of color space,” Invest. Ophthalmol. Visual Sci. Suppl. 26, 206 (1985).
  50. R. M. Shapley, P. Lennie, “Spatial frequency analysis in the visual system,” Annu. Rev. Neurosci. 8, 547–583 (1985).
    [CrossRef] [PubMed]
  51. P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
    [PubMed]
  52. D. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vision 30, 5–36 (1990).
    [CrossRef]
  53. G. D. Finalyson, “Color in perspective,” IEEE Trans. Pattern. Anal. Mach. Intell. 18, 1034–1038 (1996).
    [CrossRef]
  54. E. Delacroix, The Journal of Eugene Delacroix, translated from the French by W. Pach (Covici, Friede, New York, 1937).
  55. M. H. Brill, “Commentary on Ives `The relation between the color of the illuminantand the color of the illuminated object',” Color Res. Appl. 20, 70–71 (1995).
    [CrossRef]
  56. R. L. P. Vimal, J. Pokorny, V. C. Smith, “Appearance of steadily viewed lights,” Vision Res. 27, 1309–1318 (1987).
    [CrossRef] [PubMed]
  57. R. O. Brown, “The world is not grey,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 2165 (1994).
  58. Q. Zaidi, B. Yoshimi, N. Flanigan, A. Canova, “Lateral interactions within color mechanisms in simultaneous inducedcontrast,” Vision Res. 32, 1695–1701 (1992).
    [CrossRef] [PubMed]
  59. Q. Zaidi, B. Spehar, J. S. DeBonet, “Perceived grey-levels in complex configurations,” in Proceedings of the Third Annual IS&T/SID Color Imaging Conference (The Society for Imaging Science and Technology, Springfield, Va., 1995), pp. 14–17.
  60. S. M. Courtney, L. H. Finkel, G. Buchsbaum, “Network simulations of retinal and cortical contributions to colorconstancy,” Vision Res. 35, 413–434 (1995).
    [CrossRef] [PubMed]
  61. J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–806 (1995).
    [CrossRef] [PubMed]
  62. B. Spehar, J. S. DeBonet, Q. Zaidi, “Brightness induction from uniform and complex surrounds: a generalmodel,” Vision Res. 36, 1893–1906 (1996).
    [CrossRef] [PubMed]
  63. M. E. Chevreul, De la loi du contraste simultane des couleurs (Pitois Levreault, Paris, 1839).
  64. J. Krauskopf, Q. Zaidi, M. B. Mandler, “Mechanisms of simultaneous color induction,” J. Opt. Soc. Am. A 3, 1752–1757 (1986).
    [CrossRef] [PubMed]

1996 (3)

G. D. Finlayson, B. V. Funt, “Coefficient channels: derivation and relationship to other theoreticalstudies,” Color Res. Appl. 21, 87–96 (1996).
[CrossRef]

G. D. Finalyson, “Color in perspective,” IEEE Trans. Pattern. Anal. Mach. Intell. 18, 1034–1038 (1996).
[CrossRef]

B. Spehar, J. S. DeBonet, Q. Zaidi, “Brightness induction from uniform and complex surrounds: a generalmodel,” Vision Res. 36, 1893–1906 (1996).
[CrossRef] [PubMed]

1995 (3)

S. M. Courtney, L. H. Finkel, G. Buchsbaum, “Network simulations of retinal and cortical contributions to colorconstancy,” Vision Res. 35, 413–434 (1995).
[CrossRef] [PubMed]

J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–806 (1995).
[CrossRef] [PubMed]

M. H. Brill, “Commentary on Ives `The relation between the color of the illuminantand the color of the illuminated object',” Color Res. Appl. 20, 70–71 (1995).
[CrossRef]

1994 (6)

R. O. Brown, “The world is not grey,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 2165 (1994).

M. D'Zmura, A. Mangalick, “Detection of contrary chromatic change,” J. Opt. Soc. Am. A 11, 543–546 (1994).
[CrossRef]

D. H. Brainard, J. M. Speigle, “Achromatic loci measured under realistic viewing conditions,” Invest. Ophthalmol. Visual Sci. 35, 1328 (1994).

M. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 250, 116–121 (1994).

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
[CrossRef]

1993 (7)

J. H. van Hateren, “Spatial, temporal and spectral pre-processing for colour vision,” Proc. R. Soc. London, Ser. B 251, 61–68 (1993).
[CrossRef]

J. L. Dannemiller, “Rank ordering of photoreceptors catches from objects are nearly illuminationinvariant,” Vision Res. 33, 131–137 (1993).
[CrossRef] [PubMed]

M. D'Zmura, G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectraldescriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993).
[CrossRef]

M. D'Zmura, G. Iverson, “Color constancy. II. Results for two-stage linear recovery of spectraldescriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2166–2180 (1993).
[CrossRef]

J. A. Endler, “The color of light in forests and its implications,” Ecol. Monogr. 63, 1–27 (1993).

Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
[CrossRef] [PubMed]

Q. Zaidi, A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
[CrossRef] [PubMed]

1992 (6)

R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateralgeniculate nucleus,” Nature (London) 356, 716–718 (1992).
[CrossRef]

Q. Zaidi, B. Yoshimi, N. Flanigan, A. Canova, “Lateral interactions within color mechanisms in simultaneous inducedcontrast,” Vision Res. 32, 1695–1701 (1992).
[CrossRef] [PubMed]

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

W. Sachtler, Q. Zaidi, “Chromatic and luminance signals in visual memory,” J. Opt. Soc. Am. A 9, 877–894 (1992).
[CrossRef] [PubMed]

B. J. Craven, D. H. Foster, “An operational approach to colour constancy,” Vision Res. 32, 1359–1366 (1992).
[CrossRef] [PubMed]

D. H. Brainard, B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
[CrossRef] [PubMed]

1990 (6)

M. H. Brill, “Image segmentation by object color: a unifying framework and connectionto color constancy,” J. Opt. Soc. Am. A 7, 2041–2049 (1990).
[CrossRef] [PubMed]

A. Valberg, B. Lange-Malecki, “ `Colour constancy' in Mondrian patterns: a partial cancellationof physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

J. R. Jordan, W. S. Geisler, A. C. Bovik, “Color as a source of information in the stereo correspondence process,” Vision Res. 30, 1955–1970 (1990).
[CrossRef] [PubMed]

A. Shapiro, Q. Zaidi, D. Hood, “Adaptation in the red–green (L–M) color system,” Invest. Ophthalmol. Visual Sci. Suppl. 31, 262 (1990).

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

D. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vision 30, 5–36 (1990).
[CrossRef]

1989 (1)

J. L. Dannemiller, “Computational approaches to color constancy: adaptive and ontogeneticconsiderations,” Psychol. Rev. 96, 255–266 (1989).
[CrossRef] [PubMed]

1987 (1)

R. L. P. Vimal, J. Pokorny, V. C. Smith, “Appearance of steadily viewed lights,” Vision Res. 27, 1309–1318 (1987).
[CrossRef] [PubMed]

1986 (5)

1985 (3)

J. Worthey, “Limitations of color constancy,” J. Opt. Soc. Am. A 2, 1014–1026 (1985).
[CrossRef]

J. Krauskopf, Q. Zaidi, “Spatial factors in desensitization along cardinal directions of color space,” Invest. Ophthalmol. Visual Sci. Suppl. 26, 206 (1985).

R. M. Shapley, P. Lennie, “Spatial frequency analysis in the visual system,” Annu. Rev. Neurosci. 8, 547–583 (1985).
[CrossRef] [PubMed]

1984 (1)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

1983 (1)

E. Land, “Recent advances in retinex theory and some implications for corticalcomputations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
[CrossRef]

1982 (2)

G. West, M. H. Brill, “Necessary and sufficient conditions for Von Kries chromatic adaptationto give color constancy,” J. Math. Biol. 15, 249–258 (1982).
[CrossRef]

J. Krauskopf, D. R. Williams, D. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

1979 (1)

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. A 69, 1183–1186 (1979).
[CrossRef]

1976 (1)

J. McCann, S. McKee, T. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and700 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1971 (1)

1952 (1)

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

1947 (1)

E. L. Krinov, “Spectral'naye otrazhatel'naya sposobnost' orirodnykh obrazovani,” Izv. Akad. Nauk USSR (Proc. Acad. Sci. USSR) (1947); translation by G. Belkov, “Spectral reflectance properties of natural formations,” (National Research Council of Canada, Ottawa, Canada, 1953).

1941 (1)

1940 (1)

1912 (1)

H. E. Ives, , “The relation between the color of the illuminant and the color of theilluminated object,” Trans. Illum. Eng. Soc. 7, 62–72 (1912) [reprinted in Color Res. Appl. 20, 70–75 (1995)].
[CrossRef]

1789 (1)

G. Monge, , “Memoire sur quelques phenomenes de la vision,” Ann. Chim. (Paris) 3, 131–147 (1789).

Arend, L. E.

Benzshawel, T. L.

J. Walraven, T. L. Benzshawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.

Bovik, A. C.

J. R. Jordan, W. S. Geisler, A. C. Bovik, “Color as a source of information in the stereo correspondence process,” Vision Res. 30, 1955–1970 (1990).
[CrossRef] [PubMed]

Boynton, R. M.

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. A 69, 1183–1186 (1979).
[CrossRef]

Brainard, D. H.

D. H. Brainard, J. M. Speigle, “Achromatic loci measured under realistic viewing conditions,” Invest. Ophthalmol. Visual Sci. 35, 1328 (1994).

D. H. Brainard, B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
[CrossRef] [PubMed]

Brill, M. H.

M. H. Brill, “Commentary on Ives `The relation between the color of the illuminantand the color of the illuminated object',” Color Res. Appl. 20, 70–71 (1995).
[CrossRef]

M. H. Brill, “Image segmentation by object color: a unifying framework and connectionto color constancy,” J. Opt. Soc. Am. A 7, 2041–2049 (1990).
[CrossRef] [PubMed]

G. West, M. H. Brill, “Necessary and sufficient conditions for Von Kries chromatic adaptationto give color constancy,” J. Math. Biol. 15, 249–258 (1982).
[CrossRef]

Brown, R. O.

R. O. Brown, “The world is not grey,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 2165 (1994).

Buchsbaum, G.

S. M. Courtney, L. H. Finkel, G. Buchsbaum, “Network simulations of retinal and cortical contributions to colorconstancy,” Vision Res. 35, 413–434 (1995).
[CrossRef] [PubMed]

Canova, A.

Q. Zaidi, B. Yoshimi, N. Flanigan, A. Canova, “Lateral interactions within color mechanisms in simultaneous inducedcontrast,” Vision Res. 32, 1695–1701 (1992).
[CrossRef] [PubMed]

Carpenter, R. H. S.

R. H. S. Carpenter, Movements of the Eyes (Pion, London, 1988).

Chevreul, M. E.

M. E. Chevreul, De la loi du contraste simultane des couleurs (Pitois Levreault, Paris, 1839).

Courtney, S. M.

S. M. Courtney, L. H. Finkel, G. Buchsbaum, “Network simulations of retinal and cortical contributions to colorconstancy,” Vision Res. 35, 413–434 (1995).
[CrossRef] [PubMed]

Craven, B. J.

B. J. Craven, D. H. Foster, “An operational approach to colour constancy,” Vision Res. 32, 1359–1366 (1992).
[CrossRef] [PubMed]

Dannemiller, J. L.

J. L. Dannemiller, “Rank ordering of photoreceptors catches from objects are nearly illuminationinvariant,” Vision Res. 33, 131–137 (1993).
[CrossRef] [PubMed]

J. L. Dannemiller, “Computational approaches to color constancy: adaptive and ontogeneticconsiderations,” Psychol. Rev. 96, 255–266 (1989).
[CrossRef] [PubMed]

DeBonet, J. S.

B. Spehar, J. S. DeBonet, Q. Zaidi, “Brightness induction from uniform and complex surrounds: a generalmodel,” Vision Res. 36, 1893–1906 (1996).
[CrossRef] [PubMed]

Q. Zaidi, B. Spehar, J. S. DeBonet, “Perceived grey-levels in complex configurations,” in Proceedings of the Third Annual IS&T/SID Color Imaging Conference (The Society for Imaging Science and Technology, Springfield, Va., 1995), pp. 14–17.

Delacroix, E.

E. Delacroix, The Journal of Eugene Delacroix, translated from the French by W. Pach (Covici, Friede, New York, 1937).

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Drew, M. S.

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
[CrossRef]

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: enhancing Von Kries adaptation via sensor transformations,” in Human Vision, Visual Processing, and Digital Display IV, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE1913, 473–484 (1993).
[CrossRef]

D'Zmura, M.

Endler, J. A.

J. A. Endler, “The color of light in forests and its implications,” Ecol. Monogr. 63, 1–27 (1993).

Fairchild, M. D.

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

Finalyson, G. D.

G. D. Finalyson, “Color in perspective,” IEEE Trans. Pattern. Anal. Mach. Intell. 18, 1034–1038 (1996).
[CrossRef]

Finkel, L. H.

S. M. Courtney, L. H. Finkel, G. Buchsbaum, “Network simulations of retinal and cortical contributions to colorconstancy,” Vision Res. 35, 413–434 (1995).
[CrossRef] [PubMed]

Finlayson, G. D.

G. D. Finlayson, B. V. Funt, “Coefficient channels: derivation and relationship to other theoreticalstudies,” Color Res. Appl. 21, 87–96 (1996).
[CrossRef]

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
[CrossRef]

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: enhancing Von Kries adaptation via sensor transformations,” in Human Vision, Visual Processing, and Digital Display IV, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE1913, 473–484 (1993).
[CrossRef]

Flanigan, N.

Q. Zaidi, B. Yoshimi, N. Flanigan, A. Canova, “Lateral interactions within color mechanisms in simultaneous inducedcontrast,” Vision Res. 32, 1695–1701 (1992).
[CrossRef] [PubMed]

Forsyth, D.

D. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vision 30, 5–36 (1990).
[CrossRef]

Foster, D. H.

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 250, 116–121 (1994).

B. J. Craven, D. H. Foster, “An operational approach to colour constancy,” Vision Res. 32, 1359–1366 (1992).
[CrossRef] [PubMed]

Funt, B. V.

G. D. Finlayson, B. V. Funt, “Coefficient channels: derivation and relationship to other theoreticalstudies,” Color Res. Appl. 21, 87–96 (1996).
[CrossRef]

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
[CrossRef]

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: enhancing Von Kries adaptation via sensor transformations,” in Human Vision, Visual Processing, and Digital Display IV, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE1913, 473–484 (1993).
[CrossRef]

Geisler, W. S.

J. R. Jordan, W. S. Geisler, A. C. Bovik, “Color as a source of information in the stereo correspondence process,” Vision Res. 30, 1955–1970 (1990).
[CrossRef] [PubMed]

Gershon, R.

M. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Graham, N.

N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).

Halevy, D.

Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
[CrossRef] [PubMed]

Hayhoe, M. M.

M. M. Hayhoe, P. Wenderoth, “Adaptation mechanisms in color and brightness,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 353–367.

Heeley, D.

J. Krauskopf, D. R. Williams, D. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Helson, H.

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

Hood, D.

A. Shapiro, Q. Zaidi, D. Hood, “Adaptation in the red–green (L–M) color system,” Invest. Ophthalmol. Visual Sci. Suppl. 31, 262 (1990).

Iverson, G.

Ives, H. E.

H. E. Ives, , “The relation between the color of the illuminant and the color of theilluminated object,” Trans. Illum. Eng. Soc. 7, 62–72 (1912) [reprinted in Color Res. Appl. 20, 70–75 (1995)].
[CrossRef]

Iwan, L. S.

M. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Jenness, J. W.

J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–806 (1995).
[CrossRef] [PubMed]

Jordan, J. R.

J. R. Jordan, W. S. Geisler, A. C. Bovik, “Color as a source of information in the stereo correspondence process,” Vision Res. 30, 1955–1970 (1990).
[CrossRef] [PubMed]

Judd, D.

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

D. Judd, , “Hue, saturation and lightness of surface colors with chromatic illumination,” J. Opt. Soc. Am. 30, 2–32 (1940).
[CrossRef]

Kerr, G. P.

Krauskopf, J.

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

J. Krauskopf, Q. Zaidi, M. B. Mandler, “Mechanisms of simultaneous color induction,” J. Opt. Soc. Am. A 3, 1752–1757 (1986).
[CrossRef] [PubMed]

J. Krauskopf, Q. Zaidi, “Spatial factors in desensitization along cardinal directions of color space,” Invest. Ophthalmol. Visual Sci. Suppl. 26, 206 (1985).

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

J. Krauskopf, D. R. Williams, D. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Krinov, E. L.

E. L. Krinov, “Spectral'naye otrazhatel'naya sposobnost' orirodnykh obrazovani,” Izv. Akad. Nauk USSR (Proc. Acad. Sci. USSR) (1947); translation by G. Belkov, “Spectral reflectance properties of natural formations,” (National Research Council of Canada, Ottawa, Canada, 1953).

Land, E.

E. Land, “Recent advances in retinex theory and some implications for corticalcomputations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
[CrossRef]

E. Land, J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
[CrossRef] [PubMed]

Lange-Malecki, B.

A. Valberg, B. Lange-Malecki, “ `Colour constancy' in Mondrian patterns: a partial cancellationof physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

Lennie, P.

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

M. D'Zmura, P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
[CrossRef] [PubMed]

R. M. Shapley, P. Lennie, “Spatial frequency analysis in the visual system,” Annu. Rev. Neurosci. 8, 547–583 (1985).
[CrossRef] [PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Lucassen, M. P.

J. Walraven, T. L. Benzshawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.

MacLeod, D. I. A.

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. A 69, 1183–1186 (1979).
[CrossRef]

Maloney, L.

Mandler, M. B.

Mangalick, A.

McCann, J.

J. McCann, S. McKee, T. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

McCann, J. J.

McKee, S.

J. McCann, S. McKee, T. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

Monge, G.

G. Monge, , “Memoire sur quelques phenomenes de la vision,” Ann. Chim. (Paris) 3, 131–147 (1789).

Nascimento, S. M. C.

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 250, 116–121 (1994).

Pokorny, J.

R. L. P. Vimal, J. Pokorny, V. C. Smith, “Appearance of steadily viewed lights,” Vision Res. 27, 1309–1318 (1987).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and700 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Reeves, A.

Reid, R. C.

R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateralgeniculate nucleus,” Nature (London) 356, 716–718 (1992).
[CrossRef]

Rogowitz, B. E.

J. Walraven, T. L. Benzshawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.

Sachtler, W.

Sclar, G.

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

Shapiro, A.

A. Shapiro, Q. Zaidi, D. Hood, “Adaptation in the red–green (L–M) color system,” Invest. Ophthalmol. Visual Sci. Suppl. 31, 262 (1990).

Shapiro, A. G.

Q. Zaidi, A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
[CrossRef] [PubMed]

Shapley, R. M.

R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateralgeniculate nucleus,” Nature (London) 356, 716–718 (1992).
[CrossRef]

R. M. Shapley, P. Lennie, “Spatial frequency analysis in the visual system,” Annu. Rev. Neurosci. 8, 547–583 (1985).
[CrossRef] [PubMed]

Shevell, S. K.

J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–806 (1995).
[CrossRef] [PubMed]

Smith, V. C.

R. L. P. Vimal, J. Pokorny, V. C. Smith, “Appearance of steadily viewed lights,” Vision Res. 27, 1309–1318 (1987).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and700 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Spehar, B.

B. Spehar, J. S. DeBonet, Q. Zaidi, “Brightness induction from uniform and complex surrounds: a generalmodel,” Vision Res. 36, 1893–1906 (1996).
[CrossRef] [PubMed]

Q. Zaidi, B. Spehar, J. S. DeBonet, “Perceived grey-levels in complex configurations,” in Proceedings of the Third Annual IS&T/SID Color Imaging Conference (The Society for Imaging Science and Technology, Springfield, Va., 1995), pp. 14–17.

Speigle, J. M.

D. H. Brainard, J. M. Speigle, “Achromatic loci measured under realistic viewing conditions,” Invest. Ophthalmol. Visual Sci. 35, 1328 (1994).

Taylor, A. H.

Taylor, T.

J. McCann, S. McKee, T. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

Valberg, A.

A. Valberg, B. Lange-Malecki, “ `Colour constancy' in Mondrian patterns: a partial cancellationof physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

van Hateren, J. H.

J. H. van Hateren, “Spatial, temporal and spectral pre-processing for colour vision,” Proc. R. Soc. London, Ser. B 251, 61–68 (1993).
[CrossRef]

Vimal, R. L. P.

R. L. P. Vimal, J. Pokorny, V. C. Smith, “Appearance of steadily viewed lights,” Vision Res. 27, 1309–1318 (1987).
[CrossRef] [PubMed]

Vrhel, M.

M. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Walraven, J.

J. Walraven, T. L. Benzshawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.

Wandell, B.

Wandell, B. A.

Warren, M.

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

Wenderoth, P.

M. M. Hayhoe, P. Wenderoth, “Adaptation mechanisms in color and brightness,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 353–367.

West, G.

G. West, M. H. Brill, “Necessary and sufficient conditions for Von Kries chromatic adaptationto give color constancy,” J. Math. Biol. 15, 249–258 (1982).
[CrossRef]

Williams, D. R.

J. Krauskopf, D. R. Williams, D. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Worthey, J.

Yoshimi, B.

Q. Zaidi, B. Yoshimi, N. Flanigan, A. Canova, “Lateral interactions within color mechanisms in simultaneous inducedcontrast,” Vision Res. 32, 1695–1701 (1992).
[CrossRef] [PubMed]

Zaidi, Q.

B. Spehar, J. S. DeBonet, Q. Zaidi, “Brightness induction from uniform and complex surrounds: a generalmodel,” Vision Res. 36, 1893–1906 (1996).
[CrossRef] [PubMed]

Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
[CrossRef] [PubMed]

Q. Zaidi, A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
[CrossRef] [PubMed]

Q. Zaidi, B. Yoshimi, N. Flanigan, A. Canova, “Lateral interactions within color mechanisms in simultaneous inducedcontrast,” Vision Res. 32, 1695–1701 (1992).
[CrossRef] [PubMed]

W. Sachtler, Q. Zaidi, “Chromatic and luminance signals in visual memory,” J. Opt. Soc. Am. A 9, 877–894 (1992).
[CrossRef] [PubMed]

A. Shapiro, Q. Zaidi, D. Hood, “Adaptation in the red–green (L–M) color system,” Invest. Ophthalmol. Visual Sci. Suppl. 31, 262 (1990).

J. Krauskopf, Q. Zaidi, M. B. Mandler, “Mechanisms of simultaneous color induction,” J. Opt. Soc. Am. A 3, 1752–1757 (1986).
[CrossRef] [PubMed]

J. Krauskopf, Q. Zaidi, “Spatial factors in desensitization along cardinal directions of color space,” Invest. Ophthalmol. Visual Sci. Suppl. 26, 206 (1985).

Q. Zaidi, B. Spehar, J. S. DeBonet, “Perceived grey-levels in complex configurations,” in Proceedings of the Third Annual IS&T/SID Color Imaging Conference (The Society for Imaging Science and Technology, Springfield, Va., 1995), pp. 14–17.

Q. Zaidi, “Parallel and serial connections between human color mechanisms,” in Applications of Parallel Processing in Vision, J. R. Brannan, ed. (Elsevier, New York, 1992), pp. 227–259.

Ann. Chim. (Paris) (1)

G. Monge, , “Memoire sur quelques phenomenes de la vision,” Ann. Chim. (Paris) 3, 131–147 (1789).

Annu. Rev. Neurosci. (1)

R. M. Shapley, P. Lennie, “Spatial frequency analysis in the visual system,” Annu. Rev. Neurosci. 8, 547–583 (1985).
[CrossRef] [PubMed]

Biol. Cybern. (1)

Q. Zaidi, A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
[CrossRef] [PubMed]

Color Res. Appl. (3)

M. H. Brill, “Commentary on Ives `The relation between the color of the illuminantand the color of the illuminated object',” Color Res. Appl. 20, 70–71 (1995).
[CrossRef]

G. D. Finlayson, B. V. Funt, “Coefficient channels: derivation and relationship to other theoreticalstudies,” Color Res. Appl. 21, 87–96 (1996).
[CrossRef]

M. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Ecol. Monogr. (1)

J. A. Endler, “The color of light in forests and its implications,” Ecol. Monogr. 63, 1–27 (1993).

IEEE Trans. Pattern. Anal. Mach. Intell. (1)

G. D. Finalyson, “Color in perspective,” IEEE Trans. Pattern. Anal. Mach. Intell. 18, 1034–1038 (1996).
[CrossRef]

Illum. Eng. (1)

H. Helson, D. Judd, M. Warren, “Object-color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

Int. J. Comput. Vision (1)

D. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vision 30, 5–36 (1990).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

D. H. Brainard, J. M. Speigle, “Achromatic loci measured under realistic viewing conditions,” Invest. Ophthalmol. Visual Sci. 35, 1328 (1994).

Invest. Ophthalmol. Visual Sci. Suppl. (3)

A. Shapiro, Q. Zaidi, D. Hood, “Adaptation in the red–green (L–M) color system,” Invest. Ophthalmol. Visual Sci. Suppl. 31, 262 (1990).

J. Krauskopf, Q. Zaidi, “Spatial factors in desensitization along cardinal directions of color space,” Invest. Ophthalmol. Visual Sci. Suppl. 26, 206 (1985).

R. O. Brown, “The world is not grey,” Invest. Ophthalmol. Visual Sci. Suppl. 35, 2165 (1994).

Izv. Akad. Nauk USSR (Proc. Acad. Sci. USSR) (1)

E. L. Krinov, “Spectral'naye otrazhatel'naya sposobnost' orirodnykh obrazovani,” Izv. Akad. Nauk USSR (Proc. Acad. Sci. USSR) (1947); translation by G. Belkov, “Spectral reflectance properties of natural formations,” (National Research Council of Canada, Ottawa, Canada, 1953).

J. Math. Biol. (1)

G. West, M. H. Brill, “Necessary and sufficient conditions for Von Kries chromatic adaptationto give color constancy,” J. Math. Biol. 15, 249–258 (1982).
[CrossRef]

J. Neurosci. (1)

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (14)

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
[CrossRef]

L. Maloney, “Evaluation of linear models of surface spectral reflectance with smallnumbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986).
[CrossRef] [PubMed]

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. A 69, 1183–1186 (1979).
[CrossRef]

W. Sachtler, Q. Zaidi, “Chromatic and luminance signals in visual memory,” J. Opt. Soc. Am. A 9, 877–894 (1992).
[CrossRef] [PubMed]

L. Maloney, B. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
[CrossRef] [PubMed]

M. D'Zmura, G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectraldescriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993).
[CrossRef]

M. D'Zmura, G. Iverson, “Color constancy. II. Results for two-stage linear recovery of spectraldescriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2166–2180 (1993).
[CrossRef]

J. Worthey, “Limitations of color constancy,” J. Opt. Soc. Am. A 2, 1014–1026 (1985).
[CrossRef]

D. H. Brainard, B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
[CrossRef] [PubMed]

M. H. Brill, “Image segmentation by object color: a unifying framework and connectionto color constancy,” J. Opt. Soc. Am. A 7, 2041–2049 (1990).
[CrossRef] [PubMed]

M. D'Zmura, P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
[CrossRef] [PubMed]

L. E. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
[CrossRef] [PubMed]

M. D'Zmura, A. Mangalick, “Detection of contrary chromatic change,” J. Opt. Soc. Am. A 11, 543–546 (1994).
[CrossRef]

J. Krauskopf, Q. Zaidi, M. B. Mandler, “Mechanisms of simultaneous color induction,” J. Opt. Soc. Am. A 3, 1752–1757 (1986).
[CrossRef] [PubMed]

J. Physiol. (London) (1)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Nature (London) (1)

R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateralgeniculate nucleus,” Nature (London) 356, 716–718 (1992).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

E. Land, “Recent advances in retinex theory and some implications for corticalcomputations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
[CrossRef]

Proc. R. Soc. London, Ser. B (2)

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 250, 116–121 (1994).

J. H. van Hateren, “Spatial, temporal and spectral pre-processing for colour vision,” Proc. R. Soc. London, Ser. B 251, 61–68 (1993).
[CrossRef]

Psychol. Rev. (1)

J. L. Dannemiller, “Computational approaches to color constancy: adaptive and ontogeneticconsiderations,” Psychol. Rev. 96, 255–266 (1989).
[CrossRef] [PubMed]

Trans. Illum. Eng. Soc. (1)

H. E. Ives, , “The relation between the color of the illuminant and the color of theilluminated object,” Trans. Illum. Eng. Soc. 7, 62–72 (1912) [reprinted in Color Res. Appl. 20, 70–75 (1995)].
[CrossRef]

Vision Res. (14)

J. L. Dannemiller, “Rank ordering of photoreceptors catches from objects are nearly illuminationinvariant,” Vision Res. 33, 131–137 (1993).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, D. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

A. Valberg, B. Lange-Malecki, “ `Colour constancy' in Mondrian patterns: a partial cancellationof physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

J. McCann, S. McKee, T. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and700 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

J. R. Jordan, W. S. Geisler, A. C. Bovik, “Color as a source of information in the stereo correspondence process,” Vision Res. 30, 1955–1970 (1990).
[CrossRef] [PubMed]

Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
[CrossRef] [PubMed]

B. J. Craven, D. H. Foster, “An operational approach to colour constancy,” Vision Res. 32, 1359–1366 (1992).
[CrossRef] [PubMed]

M. D. Fairchild, P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085 (1992).
[CrossRef] [PubMed]

Q. Zaidi, B. Yoshimi, N. Flanigan, A. Canova, “Lateral interactions within color mechanisms in simultaneous inducedcontrast,” Vision Res. 32, 1695–1701 (1992).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, “Appearance of steadily viewed lights,” Vision Res. 27, 1309–1318 (1987).
[CrossRef] [PubMed]

S. M. Courtney, L. H. Finkel, G. Buchsbaum, “Network simulations of retinal and cortical contributions to colorconstancy,” Vision Res. 35, 413–434 (1995).
[CrossRef] [PubMed]

J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–806 (1995).
[CrossRef] [PubMed]

B. Spehar, J. S. DeBonet, Q. Zaidi, “Brightness induction from uniform and complex surrounds: a generalmodel,” Vision Res. 36, 1893–1906 (1996).
[CrossRef] [PubMed]

Other (9)

M. E. Chevreul, De la loi du contraste simultane des couleurs (Pitois Levreault, Paris, 1839).

Q. Zaidi, B. Spehar, J. S. DeBonet, “Perceived grey-levels in complex configurations,” in Proceedings of the Third Annual IS&T/SID Color Imaging Conference (The Society for Imaging Science and Technology, Springfield, Va., 1995), pp. 14–17.

E. Delacroix, The Journal of Eugene Delacroix, translated from the French by W. Pach (Covici, Friede, New York, 1937).

M. M. Hayhoe, P. Wenderoth, “Adaptation mechanisms in color and brightness,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 353–367.

N. Graham, Visual Pattern Analyzers (Oxford U. Press, New York, 1989).

R. H. S. Carpenter, Movements of the Eyes (Pion, London, 1988).

J. Walraven, T. L. Benzshawel, B. E. Rogowitz, M. P. Lucassen, “Testing the contrast explanation of color constancy,” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 369–378.

Q. Zaidi, “Parallel and serial connections between human color mechanisms,” in Applications of Parallel Processing in Vision, J. R. Brannan, ed. (Elsevier, New York, 1992), pp. 227–259.

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: enhancing Von Kries adaptation via sensor transformations,” in Human Vision, Visual Processing, and Digital Display IV, J. P. Allebach, B. E. Rogowitz, eds., Proc. SPIE1913, 473–484 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Excitation of the L, M, and S cones (top three plots) and the exclusive excitation of the chromatic and luminance mechanisms along the L/(L+M), S/(L+M), and L+M+S axes (bottom three plots) from each of the 170 objects from Vrhel et al.23 under illuminants T [direct sunlight (abscissa)] and Z [zenith skylight (ordinate)]. The open circles represent the object of unit uniform spectral reflectance.  

Fig. 2
Fig. 2

Excitation of the L, M, and S cones (top three plots) and the exclusive excitation of the chromatic and luminance mechanisms along the L/(L+M), S/(L+M), and L+M+S axes (bottom three plots) from each of the 335 natural formations from Krinov31 under illuminants T (abscissa) and Z (ordinate).

Fig. 3
Fig. 3

Spatial configuration and temporal sequence of stimuli for experiments 1–3. The initial adaptation period was 120 s. Each trial consisted of a 2-s period of readaptation, followed by two 3-s intervals, of which one contained a simulated illumination change with a time course of a half-sinusoid.

Fig. 4
Fig. 4

Results of experiment 1 for observers BS (left-hand plots) and KW (right-hand plots). Shown are thresholds in cone excitation units for detecting changes along the cardinal color axes. Letters on the horizontal axis indicate the direction of test color change.

Fig. 5
Fig. 5

Results of experiment 2 for observers BS (left-hand plots) and KW (right-hand plots). The log of the threshold for detecting a change in each color direction minus the log of the baseline threshold for that color direction (experiment 1) is plotted against the chromatic content of the background texture (see the text). Symbols representing the color direction of the test are shown in the insets. Dashed horizontal lines are drawn at 0.3 to indicate a doubling of threshold magnitude.

Fig. 6
Fig. 6

Results of experiment 3 for observers BS (left-hand plots) and KW (right-hand plots). Log-threshold elevations for color changes along the same color axis as that of the texture are plotted versus the number of squares/degree in the texture (logarithmic scale). Letters on the abscissa indicate the spatially uniform adapting fields of the denoted color. Each point represents the mean of the threshold elevations in the complementary directions along each color axis.  

Fig. 7
Fig. 7

Spatial configuration and temporal sequence of stimuli for experiment 4. The initial adaptation period was 120 s. Each trial consisted of a 2-s period of readaptation, followed by a 3-s interval in which the screen was divided into two vertical or horizontal halves, which contained simulated illumination changes in opposite directions along a color axis with a time course of a half-sinusoid.

Fig. 8
Fig. 8

Results of experiment 4 for observers BS and QZ. Shown are thresholds in cone excitation units for detecting changes along the LD (top plot), RG (middle plot), and YV (bottom plot) cardinal color axes on a spatially uniform W background and on textures colored along the same axis as that of the color change.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Sij=s(λ)θi(λ)Γj(λ)dλ,
Mij=m(λ)θi(λ)Γj(λ)dλ,
Lij=l(λ)θi(λ)Γj(λ)dλ,
LL dt/LE, MM dt/ME, SS dt/SE.

Metrics