Abstract

A geometrical-optical technique is used to predict the changes in the slope of the eccentric-photorefraction intensity profiles as a function of refractive state. We investigate how the intensity profiles vary with refractive state for different light source configurations and monochromatic aberrations in the eye. The best possible light source configuration extends from zero eccentricity (to increase sensitivity and reduce the dead zone) to a high eccentricity (to increase the working range). An advantage of using the extended light source is that the intensity profile of the eccentric-photorefraction reflex is more linear for extended sources than for point light sources. It is also shown that the change in slope with refractive state is dependent on pupil size. Furthermore, when asymmetric aberrations are present, the change in intensity profile slope with refractive state is dependent on the circumferential position of the light source, but this dependence can be resolved by averaging slope values obtained by using two sources placed on opposite sides of the pupil. The importance of this study to existing eccentric-photorefractor designs is discussed, and recommendations for improved eccentric photorefractors are suggested.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription