Abstract

We derive a theory to calculate light scattering from a cylinder on or near a plane interface. There are no restrictions on the values of the refractive indices of the system constituents. We use the approximation that the interference component of the electromagnetic fields strikes the plane interface at normal incidence. The exact solution is asymptotically approached when either the cylinder–interface separation is large compared with the cylinder radius or the difference between the refractive indices separated by the plane interface becomes large or approaches zero. We compare numerical results with experimental Mueller matrix elements measured from a quartz fiber on an aluminum substrate. We find that numerical results calculated with this approximation are a significant improvement over those calculated assuming the interface to be perfectly conducting and those that do not include the interaction fields.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–241 (1986).
    [Crossref]
  2. K. B. Nahm, W. L. Wolfe, “Light-scattering models for spheres on a conducting plane: comparison with experiment,” Appl. Opt. 26, 2995–2999 (1987).
    [Crossref] [PubMed]
  3. I. V. Lindell, A. H. Sihvola, K. O. Muinonen, P. W. Barber, “Scattering by a small object close to an interface. I. Exact image theory formulation,” J. Opt. Soc. Am. A 8, 472–476 (1991).
    [Crossref]
  4. K. O. Muinonen, A. H. Sihvola, I. V. Lindell, K. A. Lumme, “Scattering by a small object close to an interface. II. Study of backscattering,” J. Opt. Soc. Am. A 8, 477–482 (1991).
    [Crossref]
  5. B. R. Johnson, “Light-scattering from a spherical particle on a conducting plane. 1. Normal incidence,” J. Opt. Soc. Am. A 9, 1341–1351 (1992);errata, J. Opt. Soc. Am. A 10, 766 (1993).
    [Crossref]
  6. G. Videen, “Light scattering from a sphere on or near a surface,” 8, 483–489 (1991); errata, J. Opt. Soc. Am. A 9, 844–845 (1992).
    [Crossref]
  7. G. Videen, M. G. Turner, V. J. Iafelice, W. S. Bickel, W. L. Wolfe, “Scattering from a small sphere near a surface,” J. Opt. Soc. Am. A 8, 118–126 (1993).
    [Crossref]
  8. G. Videen, “Light scattering from a sphere behind a surface,” J. Opt. Soc. Am. A 8, 110–117 (1993).
    [Crossref]
  9. B. R. Johnson, “Morphology-dependent resonances of a dielectric sphere on a conducting plane,” J. Opt. Soc. Am. A 11, 2055–2064 (1994).
    [Crossref]
  10. G. Videen, “Light scattering from a particle on or near a perfectly conducting surface,” Opt. Commun. 115, 1–7 (1995).
    [Crossref]
  11. B. R. Johnson, “Calculation of light scattering from a spherical particle on a surface by the multipole expansion method,” J. Opt. Soc. Am. A 13, 326–337 (1996).
    [Crossref]
  12. J. C. Chao, F. J. Rizzo, I. Elshafiey, Y. J. Liu, L. Upda, P. A. Martin, “General formulation for light scattering by a dielectric body near a perfectly conducting surface,” J. Opt. Soc. Am. A 13, 338–344 (1996).
    [Crossref]
  13. T. C. Rao, R. Barakat, “Plane-wave scattering by a conducting cylinder partially buried in a ground plane. I. TM case,” J. Opt. Soc. Am. A 6, 1270–1280 (1989).
    [Crossref]
  14. T. C. Rao, R. Barakat, “Plane-wave scattering by a conducting cylinder partially buried in a ground plane. II. TE case,” J. Opt. Soc. Am. A 8, 1986–1990 (1991).
    [Crossref]
  15. B. Schlicht, K. F. Wall, R. K. Chang, P. W. Barber, “Light scattering by two parallel glass fibers,” J. Opt. Soc. Am. A 4, 800–809 (1987).
    [Crossref]
  16. P. J. Valle, F. González, F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33, 512–523 (1994).
    [Crossref] [PubMed]
  17. A. Madrazo, M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
    [Crossref]
  18. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
    [Crossref]
  19. A. Madrazo, M. Nieto-Vesperinas, N. Garcı́a, “Exact calculation of Maxwell equations for a tip–metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1995).
    [Crossref]
  20. J. M. Saiz, P. J. Valle, F. González, F. Moreno, D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33, 1261–1270 (1994).
    [Crossref]
  21. P. J. Valle, F. Moreno, J. M. Saiz, F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 681–690 (1995).
    [Crossref]
  22. R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, “Plane-wave scattering by a perfectly conducting circular cylinder near a plane surface: cylindrical-wave approach,” J. Opt. Soc. Am. A 13, 483–493 (1996).
    [Crossref]
  23. G. Videen, W. S. Bickel, V. J. Iafelice, D. Abromson, “Experimental light-scattering Mueller matrix for a fiber on a reflecting optical surface as a function of incident angle,” J. Opt. Soc. Am. A 9, 312–315 (1992).
    [Crossref]
  24. J. C. Bertrand, J. W. Young, “Multiple scattering between a cylinder and a plane,” J. Acoust. Soc. Am. 60, 1265–1269 (1975).
    [Crossref]
  25. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980).
    [Crossref] [PubMed]
  26. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  27. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).
    [Crossref]
  28. G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).
    [Crossref]
  29. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  30. A. J. Hunt, D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
    [Crossref]
  31. R. J. Perry, A. J. Hunt, D. R. Huffman, “Experimental determinations of Mueller scattering matrices of nonspherical particles,” Appl. Opt. 17, 2700–2710 (1978).
    [Crossref] [PubMed]
  32. W. S. Bickel, J. F. Davidson, D. R. Huffman, R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486–490 (1976).
    [Crossref]
  33. D. E. Grey, ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972).
  34. M. R. Querry, “Optical Constants,” , U.S. Army Armament, Munitions, and Chemical Command, Aberdeen Proving Ground, Md. (1985).

1996 (4)

1995 (4)

A. Madrazo, M. Nieto-Vesperinas, N. Garcı́a, “Exact calculation of Maxwell equations for a tip–metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1995).
[Crossref]

P. J. Valle, F. Moreno, J. M. Saiz, F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 681–690 (1995).
[Crossref]

G. Videen, “Light scattering from a particle on or near a perfectly conducting surface,” Opt. Commun. 115, 1–7 (1995).
[Crossref]

A. Madrazo, M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
[Crossref]

1994 (5)

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[Crossref]

B. R. Johnson, “Morphology-dependent resonances of a dielectric sphere on a conducting plane,” J. Opt. Soc. Am. A 11, 2055–2064 (1994).
[Crossref]

P. J. Valle, F. González, F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33, 512–523 (1994).
[Crossref] [PubMed]

J. M. Saiz, P. J. Valle, F. González, F. Moreno, D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33, 1261–1270 (1994).
[Crossref]

D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).
[Crossref]

1993 (2)

G. Videen, M. G. Turner, V. J. Iafelice, W. S. Bickel, W. L. Wolfe, “Scattering from a small sphere near a surface,” J. Opt. Soc. Am. A 8, 118–126 (1993).
[Crossref]

G. Videen, “Light scattering from a sphere behind a surface,” J. Opt. Soc. Am. A 8, 110–117 (1993).
[Crossref]

1992 (2)

1991 (4)

1989 (1)

1987 (2)

1986 (1)

P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–241 (1986).
[Crossref]

1980 (1)

1978 (1)

1976 (1)

W. S. Bickel, J. F. Davidson, D. R. Huffman, R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486–490 (1976).
[Crossref]

1975 (1)

J. C. Bertrand, J. W. Young, “Multiple scattering between a cylinder and a plane,” J. Acoust. Soc. Am. 60, 1265–1269 (1975).
[Crossref]

1973 (1)

A. J. Hunt, D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
[Crossref]

Abromson, D.

Barakat, R.

Barber, P. W.

Bertrand, J. C.

J. C. Bertrand, J. W. Young, “Multiple scattering between a cylinder and a plane,” J. Acoust. Soc. Am. 60, 1265–1269 (1975).
[Crossref]

Bickel, W. S.

G. Videen, M. G. Turner, V. J. Iafelice, W. S. Bickel, W. L. Wolfe, “Scattering from a small sphere near a surface,” J. Opt. Soc. Am. A 8, 118–126 (1993).
[Crossref]

G. Videen, W. S. Bickel, V. J. Iafelice, D. Abromson, “Experimental light-scattering Mueller matrix for a fiber on a reflecting optical surface as a function of incident angle,” J. Opt. Soc. Am. A 9, 312–315 (1992).
[Crossref]

W. S. Bickel, J. F. Davidson, D. R. Huffman, R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486–490 (1976).
[Crossref]

Bobbert, P. A.

P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–241 (1986).
[Crossref]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Borghi, R.

Carminati, R.

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[Crossref]

Chang, R. K.

Chao, J. C.

Davidson, J. F.

W. S. Bickel, J. F. Davidson, D. R. Huffman, R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486–490 (1976).
[Crossref]

Elshafiey, I.

Frezza, F.

Garci´a, N.

A. Madrazo, M. Nieto-Vesperinas, N. Garcı́a, “Exact calculation of Maxwell equations for a tip–metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1995).
[Crossref]

González, F.

P. J. Valle, F. Moreno, J. M. Saiz, F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 681–690 (1995).
[Crossref]

J. M. Saiz, P. J. Valle, F. González, F. Moreno, D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33, 1261–1270 (1994).
[Crossref]

P. J. Valle, F. González, F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33, 512–523 (1994).
[Crossref] [PubMed]

Gori, F.

Hart, M. B.

G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).
[Crossref]

Huffman, D. R.

R. J. Perry, A. J. Hunt, D. R. Huffman, “Experimental determinations of Mueller scattering matrices of nonspherical particles,” Appl. Opt. 17, 2700–2710 (1978).
[Crossref] [PubMed]

W. S. Bickel, J. F. Davidson, D. R. Huffman, R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486–490 (1976).
[Crossref]

A. J. Hunt, D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
[Crossref]

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Hunt, A. J.

R. J. Perry, A. J. Hunt, D. R. Huffman, “Experimental determinations of Mueller scattering matrices of nonspherical particles,” Appl. Opt. 17, 2700–2710 (1978).
[Crossref] [PubMed]

A. J. Hunt, D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
[Crossref]

Iafelice, V. J.

G. Videen, M. G. Turner, V. J. Iafelice, W. S. Bickel, W. L. Wolfe, “Scattering from a small sphere near a surface,” J. Opt. Soc. Am. A 8, 118–126 (1993).
[Crossref]

G. Videen, W. S. Bickel, V. J. Iafelice, D. Abromson, “Experimental light-scattering Mueller matrix for a fiber on a reflecting optical surface as a function of incident angle,” J. Opt. Soc. Am. A 9, 312–315 (1992).
[Crossref]

Johnson, B. R.

Jordan, D. L.

J. M. Saiz, P. J. Valle, F. González, F. Moreno, D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33, 1261–1270 (1994).
[Crossref]

Kilkson, R.

W. S. Bickel, J. F. Davidson, D. R. Huffman, R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486–490 (1976).
[Crossref]

Lindell, I. V.

Liu, Y. J.

Lumme, K. A.

Mackowski, D. W.

Madrazo, A.

A. Madrazo, M. Nieto-Vesperinas, N. Garcı́a, “Exact calculation of Maxwell equations for a tip–metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1995).
[Crossref]

A. Madrazo, M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
[Crossref]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[Crossref]

Martin, P. A.

Moreno, F.

P. J. Valle, F. Moreno, J. M. Saiz, F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 681–690 (1995).
[Crossref]

J. M. Saiz, P. J. Valle, F. González, F. Moreno, D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33, 1261–1270 (1994).
[Crossref]

P. J. Valle, F. González, F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33, 512–523 (1994).
[Crossref] [PubMed]

Muinonen, K. O.

Nahm, K. B.

Ngo, D.

G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).
[Crossref]

Nieto-Vesperinas, M.

A. Madrazo, M. Nieto-Vesperinas, N. Garcı́a, “Exact calculation of Maxwell equations for a tip–metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1995).
[Crossref]

A. Madrazo, M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
[Crossref]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[Crossref]

Perry, R. J.

Querry, M. R.

M. R. Querry, “Optical Constants,” , U.S. Army Armament, Munitions, and Chemical Command, Aberdeen Proving Ground, Md. (1985).

Rao, T. C.

Rizzo, F. J.

Saiz, J. M.

P. J. Valle, F. Moreno, J. M. Saiz, F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 681–690 (1995).
[Crossref]

J. M. Saiz, P. J. Valle, F. González, F. Moreno, D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33, 1261–1270 (1994).
[Crossref]

Santarsiero, M.

Schettini, G.

Schlicht, B.

Sihvola, A. H.

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Turner, M. G.

G. Videen, M. G. Turner, V. J. Iafelice, W. S. Bickel, W. L. Wolfe, “Scattering from a small sphere near a surface,” J. Opt. Soc. Am. A 8, 118–126 (1993).
[Crossref]

Upda, L.

Valle, P. J.

P. J. Valle, F. Moreno, J. M. Saiz, F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 681–690 (1995).
[Crossref]

J. M. Saiz, P. J. Valle, F. González, F. Moreno, D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33, 1261–1270 (1994).
[Crossref]

P. J. Valle, F. González, F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33, 512–523 (1994).
[Crossref] [PubMed]

Videen, G.

G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).
[Crossref]

G. Videen, “Light scattering from a particle on or near a perfectly conducting surface,” Opt. Commun. 115, 1–7 (1995).
[Crossref]

G. Videen, “Light scattering from a sphere behind a surface,” J. Opt. Soc. Am. A 8, 110–117 (1993).
[Crossref]

G. Videen, M. G. Turner, V. J. Iafelice, W. S. Bickel, W. L. Wolfe, “Scattering from a small sphere near a surface,” J. Opt. Soc. Am. A 8, 118–126 (1993).
[Crossref]

G. Videen, W. S. Bickel, V. J. Iafelice, D. Abromson, “Experimental light-scattering Mueller matrix for a fiber on a reflecting optical surface as a function of incident angle,” J. Opt. Soc. Am. A 9, 312–315 (1992).
[Crossref]

G. Videen, “Light scattering from a sphere on or near a surface,” 8, 483–489 (1991); errata, J. Opt. Soc. Am. A 9, 844–845 (1992).
[Crossref]

Vlieger, J.

P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–241 (1986).
[Crossref]

Wall, K. F.

Wiscombe, W. J.

Wolfe, W. L.

G. Videen, M. G. Turner, V. J. Iafelice, W. S. Bickel, W. L. Wolfe, “Scattering from a small sphere near a surface,” J. Opt. Soc. Am. A 8, 118–126 (1993).
[Crossref]

K. B. Nahm, W. L. Wolfe, “Light-scattering models for spheres on a conducting plane: comparison with experiment,” Appl. Opt. 26, 2995–2999 (1987).
[Crossref] [PubMed]

Young, J. W.

J. C. Bertrand, J. W. Young, “Multiple scattering between a cylinder and a plane,” J. Acoust. Soc. Am. 60, 1265–1269 (1975).
[Crossref]

Appl. Opt. (4)

J. Acoust. Soc. Am. (1)

J. C. Bertrand, J. W. Young, “Multiple scattering between a cylinder and a plane,” J. Acoust. Soc. Am. 60, 1265–1269 (1975).
[Crossref]

J. Opt. Soc. Am. A (15)

R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, “Plane-wave scattering by a perfectly conducting circular cylinder near a plane surface: cylindrical-wave approach,” J. Opt. Soc. Am. A 13, 483–493 (1996).
[Crossref]

G. Videen, W. S. Bickel, V. J. Iafelice, D. Abromson, “Experimental light-scattering Mueller matrix for a fiber on a reflecting optical surface as a function of incident angle,” J. Opt. Soc. Am. A 9, 312–315 (1992).
[Crossref]

D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).
[Crossref]

A. Madrazo, M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
[Crossref]

B. R. Johnson, “Calculation of light scattering from a spherical particle on a surface by the multipole expansion method,” J. Opt. Soc. Am. A 13, 326–337 (1996).
[Crossref]

J. C. Chao, F. J. Rizzo, I. Elshafiey, Y. J. Liu, L. Upda, P. A. Martin, “General formulation for light scattering by a dielectric body near a perfectly conducting surface,” J. Opt. Soc. Am. A 13, 338–344 (1996).
[Crossref]

T. C. Rao, R. Barakat, “Plane-wave scattering by a conducting cylinder partially buried in a ground plane. I. TM case,” J. Opt. Soc. Am. A 6, 1270–1280 (1989).
[Crossref]

T. C. Rao, R. Barakat, “Plane-wave scattering by a conducting cylinder partially buried in a ground plane. II. TE case,” J. Opt. Soc. Am. A 8, 1986–1990 (1991).
[Crossref]

B. Schlicht, K. F. Wall, R. K. Chang, P. W. Barber, “Light scattering by two parallel glass fibers,” J. Opt. Soc. Am. A 4, 800–809 (1987).
[Crossref]

I. V. Lindell, A. H. Sihvola, K. O. Muinonen, P. W. Barber, “Scattering by a small object close to an interface. I. Exact image theory formulation,” J. Opt. Soc. Am. A 8, 472–476 (1991).
[Crossref]

K. O. Muinonen, A. H. Sihvola, I. V. Lindell, K. A. Lumme, “Scattering by a small object close to an interface. II. Study of backscattering,” J. Opt. Soc. Am. A 8, 477–482 (1991).
[Crossref]

B. R. Johnson, “Light-scattering from a spherical particle on a conducting plane. 1. Normal incidence,” J. Opt. Soc. Am. A 9, 1341–1351 (1992);errata, J. Opt. Soc. Am. A 10, 766 (1993).
[Crossref]

G. Videen, M. G. Turner, V. J. Iafelice, W. S. Bickel, W. L. Wolfe, “Scattering from a small sphere near a surface,” J. Opt. Soc. Am. A 8, 118–126 (1993).
[Crossref]

G. Videen, “Light scattering from a sphere behind a surface,” J. Opt. Soc. Am. A 8, 110–117 (1993).
[Crossref]

B. R. Johnson, “Morphology-dependent resonances of a dielectric sphere on a conducting plane,” J. Opt. Soc. Am. A 11, 2055–2064 (1994).
[Crossref]

Light scattering from a sphere on or near a surface (1)

G. Videen, “Light scattering from a sphere on or near a surface,” 8, 483–489 (1991); errata, J. Opt. Soc. Am. A 9, 844–845 (1992).
[Crossref]

Opt. Commun. (3)

G. Videen, “Light scattering from a particle on or near a perfectly conducting surface,” Opt. Commun. 115, 1–7 (1995).
[Crossref]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[Crossref]

G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).
[Crossref]

Opt. Eng. (1)

J. M. Saiz, P. J. Valle, F. González, F. Moreno, D. L. Jordan, “Backscattering from particulate surfaces: experiment and theoretical modeling,” Opt. Eng. 33, 1261–1270 (1994).
[Crossref]

Phys. Rev. B (2)

P. J. Valle, F. Moreno, J. M. Saiz, F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 681–690 (1995).
[Crossref]

A. Madrazo, M. Nieto-Vesperinas, N. Garcı́a, “Exact calculation of Maxwell equations for a tip–metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1995).
[Crossref]

Physica A (1)

P. A. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–241 (1986).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

W. S. Bickel, J. F. Davidson, D. R. Huffman, R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486–490 (1976).
[Crossref]

Rev. Sci. Instrum. (1)

A. J. Hunt, D. R. Huffman, “A new polarization-modulated light scattering instrument,” Rev. Sci. Instrum. 44, 1753–1762 (1973).
[Crossref]

Other (4)

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

D. E. Grey, ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972).

M. R. Querry, “Optical Constants,” , U.S. Army Armament, Munitions, and Chemical Command, Aberdeen Proving Ground, Md. (1985).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry of the scattering system showing the cylinder centered on the (x1, y1, z1) coordinate system and the image cylinder centered on the (x2, y2, z2) coordinate system. Angle α rotates counterclockwise from the x1 axis.

Fig. 2
Fig. 2

Four independent experimental (solid curves) light-scattering Mueller matrix elements for a quartz fiber resting on an aluminum substrate illuminated at α=78.75° by a He–Cd laser (λ1=0.4416 µm). Theoretical (dashed curves) light-scattering Mueller matrix elements calculated for an a=0.226-µm-radius quartz (mcyl=1.466) cylinder a distance d=0.255 µm from an m2=0.5+3.8i substrate.

Fig. 3
Fig. 3

Light-scattering Mueller matrix elements of the experimental system of Fig. 2 but measured at a different position (solid curves). Theoretical light-scattering Mueller matrix elements (dashed curves) calculated for an a=0.260-µm-radius quartz (mcyl=1.466) cylinder a distance d=0.320 µm from an m2=0.5+3.8i substrate (α=78.75°, λ1=0.4416 µm).

Fig. 4
Fig. 4

Four independent light-scattering Mueller matrix elements calculated for an a=0.226-µm-radius (mcyl=1.466) cylinder a distance d=0.255 µm from a perfectly conducting surface (α=78.75°, λ1=0.4416 µm).

Fig. 5
Fig. 5

Comparison of the light-scattering intensities of an a=0.226-µm quartz (mcyl=1.466) cylinder resting a distance d=0.255 µm above m2=0.5+3.8i and perfectly conducting substrates illuminated at α=78.75° by a He–Cd laser (λ1=0.4416 µm).

Fig. 6
Fig. 6

Four independent light-scattering Mueller matrix elements calculated for an a=0.226-µm-radius (mcyl=1.466) cylinder a distance d=0.255 µm from an m2=0.5+3.8i substrate (α=78.75°, λ1=0.4416 µm). The interaction field is assumed to be zero.

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

Mn,j(m)=inZn(m)(krj)krjrˆj-Zn(m)(krj)ϕˆjexp(inϕj),
Nn,j(m)=Zn(m)(krj)exp(inϕj)zˆj,
Einc1=E0k1n=- an(1)Mn,1(1)+an(2)Nn,1(1).
Esca1=E0k1n=- bn(3)Mn,1(3)+bn(4)Nn,1(3).
Eint1=E0k1n=- cn(1)Mn,1(1)+cn(2)Nn,1(1).
Ecyl1=E0kcyln=- dn(1)Mn,1(1)+dn(2)Nn,1(1).
bn(3)=-[an(1)+cn(1)]×k1Jn(k1a)Jn(kcyla)-kcylJn(k1a)Jn(kcyla)k1Hn(1)(k1a)Jn(kcyla)-kcylHn(1)(k1a)Jn(kcyla)=-[an(1)+cn(1)]Qn(1),
bn(4)=-[an(2)+cn(2)]×kcylJn(k1a)Jn(kcyla)-k1Jn(k1a)Jn(kcyla)kcylHn(1)(k1a)Jn(kcyla)-k1Hn(1)(k1a)Jn(kcyla)=-[an(2)+cn(2)]Qn(2),
TijTE(α)=2 cos αcos α+ZiZj[1-(ni/nj)2 sin2 α]1/2,
TijTM(α)=2 cos αZiZjcos α+[1-(ni/nj)2 sin2 α]1/2,
RijTE(α)=cos α-ZiZj[1-(ni/nj)2 sin2 α]1/2cos α+ZiZj[1-(ni/nj)2 sin2 α]1/2,
RijTM(α)=-ZiZjcos α-[1-(ni/nj)2 sin2 α]1/2ZiZjcos α+[1-(ni/nj)2 sin2 α]1/2,
Zi/Zj=μikj/μjki.
RijTE(0)=RijTM(0)=Rij(0).
Eint1=E0k1R12(0)n=--bn(3)Mn¯,2(3)+bn(4)Nn¯,2(4),
cn(1)=R12(0)m=--bm¯(3)An(m),
cn(2)=R12(0)m=- bm¯(4)An(m),
bn3=-an1+R12TE0m=--bm¯3AnmQn1,
bn4=-an2+R12TE0m=- bm¯4AnmQn2,
N=x+4x1/3+2,
E=zˆ1E0 exp[i(k1x1 cos α+k1y1 sin α)].
an(1)=an(1)TE=0,
an(2)=an(2)TE=(i)n exp(-inα).
an(2)TE=in[exp(-inα)+R12TE(α)(-1)n ×exp(inα+2ik1d cos α)].
E=E0(yˆ1 cos α+xˆ1 sin α)×exp[i(k1x1 cos α+k1y1 sin α)].
an(1)TM=-in+1[exp(-inα)-R12TM(α)(-1)n×exp(inα+2ik1d cos α)],
an(2)TM=0.
Hn(1)(kr)2πkr exp(ikr)(-i)n exp(-iπ/4).
ETEscaETMsca=exp3iπ/42πkr1 expikr1T100T2ETEincETMinc.
T1=T12TE(ϕ1)exp[i(k1-k2)d/cos ϕ1]×n=- bn(4)(-i)n exp(inϕ1),
T2=iT12TM(ϕ1)exp[i(k1-k2)d/cos ϕ1]×n=- bn(3)(-i)n exp(inϕ1).
T1=n=- bn(4)(-i)n{exp(inϕ1)+R12TE(π-ϕ1)×exp[in(π-ϕ1)-2ik1d cos ϕ1]},
T2=in=- bn(3)(-i)n{exp(inϕ1)-R12TM(π-ϕ1)×exp[in(π-ϕ1)-2ik1d cos ϕ1]}.
S11=12(|T1|2+|T2|2),
S12=-12(|T1|2-|T2|2)/S11,
S33=Re{T1T2*}/S11,
S34=Im{T1T2*}/S11.
[(S12)2+(S33)2+(S34)2]1/2=1.
Mn,2(3)=m=- Am(n)Mm,1(1)+Bm(n)Nm,1(1),
Nn,2(3)=m=- Am(n)Nm,1(1)+Bm(n)Mm,1(1).
Hn(1)(kr2)exp(inϕ2)=m=- Hm(1)(2kd)Jn+m(kr1)×exp[i(n+m)ϕ1].

Metrics