Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Luminescence optical tomography of dense scattering media

Not Accessible

Your library or personal account may give you access

Abstract

Using a set of coupled radiation transport equations, we derive image operators for luminescence optical tomography with which it is possible to reconstruct concentration and mean lifetime distribution from information obtained from dc and time-harmonic optical sources. Weight functions and detector readings were computed from analytic solutions of the diffusion equation and from numerical solutions of the transport equation by Monte Carlo methods. Detector readings were also obtained from experiments on vessels containing a balloon filled with dye embedded in an Intralipid suspension with dye in the background. Image reconstructions were performed by the conjugate gradient descent method and the simultaneous algebraic reconstruction technique with a positivity constraint. A concentration correction was developed in which the reconstructed concentration information is used in the mean-lifetime reconstruction. The results show that the target can be accurately located in both the simulated and the experimental cases, but quantitative inaccuracies are present. Observed errors include a shadowing effect in regions that have the lowest weight within the inclusion. Application of the concentration correction can significantly improve computational efficiency and reduce error in the mean-lifetime reconstructions.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Improved reconstruction algorithm for luminescence optical tomography when background lumiphore is present

J. Chang, H. L. Graber, and R. L. Barbour
Appl. Opt. 37(16) 3547-3552 (1998)

Recovery of optical cross-section perturbations in dense-scattering media by transport-theory-based imaging operators and steady-state simulated data

Jenghwa Chang, Harry L. Graber, Randall L. Barbour, and Raphael Aronson
Appl. Opt. 35(20) 3963-3978 (1996)

Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method

Wenwu Zhu, Yao Wang, Yuqi Yao, Jenghwa Chang, Harry L. Graber, and Randall L. Barbour
J. Opt. Soc. Am. A 14(4) 799-807 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.