Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photon migration of near-diffusive photons in turbid media: a Lagrangian-based approach

Not Accessible

Your library or personal account may give you access

Abstract

We show that light transport in a turbid medium can be described by a path integral with a quasi-particle Lagrangian. The most probable trajectory over which photons can be found can be obtained from this Lagrangian. This approach extends the diffusion approximation to the near-diffusive regime, in which photons travel only a few transport mean free paths.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Model for photon migration in turbid biological media

R. F. Bonner, R. Nossal, S. Havlin, and G. H. Weiss
J. Opt. Soc. Am. A 4(3) 423-432 (1987)

Effect of the scattering delay on time-dependent photon migration in turbid media

I. V. Yaroslavsky, A. N. Yaroslavsky, V. V. Tuchin, and H.-J. Schwarzmaier
Appl. Opt. 36(25) 6529-6538 (1997)

Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory

Daniele Contini, Fabrizio Martelli, and Giovanni Zaccanti
Appl. Opt. 36(19) 4587-4599 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved