Abstract

The diffusion of correlation is used to detect, localize, and characterize dynamical and optical spatial inhomogeneities in turbid media and is accurately modeled by a correlation diffusion equation. We demonstrate experimentally and with Monte Carlo simulations that the transport of correlation can be viewed as a correlation wave {analogous to a diffuse photon-density wave [Phys. Today 48, 34 (1995)]} that propagates spherically outward from sources and scatters from macroscopic spatial variations in dynamical and/or optical properties. We demonstrate the utility of inverse scattering algorithms for reconstructing images of the spatially varying dynamical properties of turbid media. The biomedical applicability of this diffuse correlation probe is illustrated in studies of the depth of burned tissues.

© 1997 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media

Dawid Borycki, Oybek Kholiqov, Shau Poh Chong, and Vivek J. Srinivasan
Opt. Express 24(1) 329-354 (2016)

Quantitative determination of dynamical properties using coherent spatial frequency domain imaging

Tyler B. Rice, Soren D. Konecky, Amaan Mazhar, David J. Cuccia, Anthony J. Durkin, Bernard Choi, and Bruce J. Tromberg
J. Opt. Soc. Am. A 28(10) 2108-2114 (2011)

Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer

Franck Jaillon, Sergey E. Skipetrov, Jun Li, Gregor Dietsche, Georg Maret, and Thomas Gisler
Opt. Express 14(22) 10181-10194 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (20)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (80)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription