Abstract

A new method of visualizing objects with distinct internal dynamics of the constituent scattering particles embedded in a liquid multiple-scattering medium is presented. We report dynamic multiple-light-scattering experiments and a theoretical model, based on diffusing photon-density waves for concentrated colloidal suspensions in Brownian motion, as a background medium into which is inserted a capillary containing (i) the same suspension under flow, or (ii) suspensions of different particle sizes in Brownian motion. These model objects, with purely dynamic but no static scattering contrast, can be visualized by space-resolved measurements of the time autocorrelation function g2(τ) of the scattered light intensity at the sample surface. Maximum contrast occurs at a parameter-dependent finite correlation time τ. The physical origin of this effect is outlined. Our data are in excellent quantitative agreement with the model, with no adjustable parameter.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription