Abstract

Near-field optical imaging mechanisms are investigated on an elementary level with the use of a coupled dipole formalism. Both optical probe and sample particles are considered as single dipolar cells. The sample particles are located on the surface of a layered substrate, and the optical probe is guided over the sample at constant height. The theory of the coupled dipole formalism with the use of Green's functions of a layered reference system is outlined, and asymptotic forms for far-field radiation are derived. Depending on the direction of observation, the recorded far-field radiation contains different information. It is shown that radiation emitted into the lower half-space at angles within the critical angle of total internal reflection (allowed light) provides reliable images that are only weakly correlated to the topography of the sample. Higher resolution is achieved with the radiation emitted at supercritical angles (forbidden light), but the high sensitivity to topographical variations makes image interpretation difficult. In order to image the optical properties of the sample, it is shown to be unfavorable to include the forbidden light in the optical signal.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (58)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription