Abstract

We propose a two-parameter model for the perceived size (spatial extent) of a Gaussian-windowed, drifting sinusoidal luminance pattern (a Gabor patch) based on the simple assumption that perceived size is determined by detection threshold for the sinusoidal carrier. Psychophysical measures of perceived size vary with peak contrast, Gaussian standard deviation, and carrier spatial frequency in a manner predicted by the model. At suprathreshold peak contrasts Gabor perceived size is relatively unaffected by systemic noise but varies in a manner that is consistent with the influence of local contrast gain control. However, at and near threshold, systemic noise plays a major role in determining perceived size. The data and the model indicate that measures of contrast threshold using Gaussian-windowed stimuli (or any other nonflat contrast window) are determined not just by contrast response of the neurons activated by the stimulus but also by integration of that activation over a noisy, contrast-dependent extent of the stimulus in space and time. Thus, when we wish to measure precisely the influence of spatial and temporal integration on threshold, we cannot do so by combining contrast threshold measures with Gaussian-windowed stimuli.

© 1997 Optical Society of America

Full Article  |  PDF Article

Errata

R. E. Fredericksen, Peter J. Bex, and Frans A. J. Verstraten, "How big is a Gabor patch, and why should we care? errata," J. Opt. Soc. Am. A 15, 1959-1959 (1998)
https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-15-7-1959

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription