K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy: phantom and preliminary in vivo results,” Invest. Radiol. 29, 410–414 (1994).

[CrossRef]
[PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).

[CrossRef]
[PubMed]

M. R. Hee, J. A. Izatt, J. M. Jacobson, G. Fujimoto, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18, 950–952 (1993).

[CrossRef]
[PubMed]

R. Graaf, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).

[CrossRef]

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).

[CrossRef]
[PubMed]

G. Zaccanti, P. Bruscaglioni, A. Ismaelli, L. Carraresi, M. Gurioli, Q. Wei, “Transmission of a pulsed thin light beam through thick turbid media: experimental results,” Appl. Opt. 31, 2141–2147 (1992).

[CrossRef]
[PubMed]

S. Avrillier, E. Tinet, E. Delettre, “Monte Carlo simulation of collimated beam transmission through turbid media,” J. Phys. (Paris) 51, 2521–2542 (1990).

[CrossRef]

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).

[CrossRef]
[PubMed]

S. L. Jacques, “Time-resolved propagation of ultrashort laser pulses within turbid tissues,” Appl. Opt. 28, 2223–2229 (1989).

[CrossRef]
[PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modelling of light propagation in highly scattering tissues: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989).

[CrossRef]
[PubMed]

L. Henyey, J. Greenstein, “Diffuse radiation in the Galaxy,” Astrophys. J. 93, 70–83 (1941).

[CrossRef]

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, New York, 1970).

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).

[CrossRef]
[PubMed]

S. Avrillier, E. Tinet, E. Delettre, “Monte Carlo simulation of collimated beam transmission through turbid media,” J. Phys. (Paris) 51, 2521–2542 (1990).

[CrossRef]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).

[CrossRef]
[PubMed]

G. Zaccanti, P. Bruscaglioni, A. Ismaelli, L. Carraresi, M. Gurioli, Q. Wei, “Transmission of a pulsed thin light beam through thick turbid media: experimental results,” Appl. Opt. 31, 2141–2147 (1992).

[CrossRef]
[PubMed]

P. Bruscaglioni, G. Zaccanti, “Multiple scattering in dense media,” in Scattering in Volumes and Surfaces, M. Nietol Vesperinas, J. Dainty, eds. (Elsevier, New York, 1990), pp. 53–71.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy: phantom and preliminary in vivo results,” Invest. Radiol. 29, 410–414 (1994).

[CrossRef]
[PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. SPIE1203, 62–75 (1990).

[CrossRef]

S. Avrillier, E. Tinet, E. Delettre, “Monte Carlo simulation of collimated beam transmission through turbid media,” J. Phys. (Paris) 51, 2521–2542 (1990).

[CrossRef]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modelling of light propagation in highly scattering tissues: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989).

[CrossRef]
[PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).

[CrossRef]
[PubMed]

C. M. Gardner, A. J. Welch, “Improvements in the accuracy and statistical variance of the Monte Carlo simulation of light distribution in tissue,” in Laser–Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE1646, 400–409 (1992).

[CrossRef]

G. Goertzel, M. H. Kalos, “Monte Carlo methods in transport problems,” in Series I of Progress in Nuclear Energy (Pergamon, New York, 1958), Vol. 2, pp. 315–369.

L. Henyey, J. Greenstein, “Diffuse radiation in the Galaxy,” Astrophys. J. 93, 70–83 (1941).

[CrossRef]

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).

[CrossRef]
[PubMed]

L. Henyey, J. Greenstein, “Diffuse radiation in the Galaxy,” Astrophys. J. 93, 70–83 (1941).

[CrossRef]

S. L. Jacques, “Time-resolved propagation of ultrashort laser pulses within turbid tissues,” Appl. Opt. 28, 2223–2229 (1989).

[CrossRef]
[PubMed]

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).

[CrossRef]
[PubMed]

L. Wang, S. L. Jacques, “Monte Carlo simulation of photon distribution in multi-layered turbid media in ANSI standard c,” (Copyright University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, 1992).

G. Goertzel, M. H. Kalos, “Monte Carlo methods in transport problems,” in Series I of Progress in Nuclear Energy (Pergamon, New York, 1958), Vol. 2, pp. 315–369.

M. H. Kalos, P. Whitlock, “Random walks and integral equations,” in Monte Carlo Methods (Wiley, New York, 1986), Vol. I, Chap. 7, pp. 145–156.

[CrossRef]

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. SPIE1203, 62–75 (1990).

[CrossRef]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).

[CrossRef]
[PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy: phantom and preliminary in vivo results,” Invest. Radiol. 29, 410–414 (1994).

[CrossRef]
[PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modelling of light propagation in highly scattering tissues: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989).

[CrossRef]
[PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. SPIE1203, 62–75 (1990).

[CrossRef]

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, New York, 1970).

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy: phantom and preliminary in vivo results,” Invest. Radiol. 29, 410–414 (1994).

[CrossRef]
[PubMed]

S. Avrillier, E. Tinet, E. Delettre, “Monte Carlo simulation of collimated beam transmission through turbid media,” J. Phys. (Paris) 51, 2521–2542 (1990).

[CrossRef]

H. C. van de Hulst, Multiple Light Scattering, Tables, Formulas and Applications (Academic, New York, 1980).

L. Wang, S. L. Jacques, “Monte Carlo simulation of photon distribution in multi-layered turbid media in ANSI standard c,” (Copyright University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, 1992).

C. M. Gardner, A. J. Welch, “Improvements in the accuracy and statistical variance of the Monte Carlo simulation of light distribution in tissue,” in Laser–Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE1646, 400–409 (1992).

[CrossRef]

M. H. Kalos, P. Whitlock, “Random walks and integral equations,” in Monte Carlo Methods (Wiley, New York, 1986), Vol. I, Chap. 7, pp. 145–156.

[CrossRef]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modelling of light propagation in highly scattering tissues: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989).

[CrossRef]
[PubMed]

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).

[CrossRef]
[PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. SPIE1203, 62–75 (1990).

[CrossRef]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modelling of light propagation in highly scattering tissues: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989).

[CrossRef]
[PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy: phantom and preliminary in vivo results,” Invest. Radiol. 29, 410–414 (1994).

[CrossRef]
[PubMed]

G. Zaccanti, P. Bruscaglioni, A. Ismaelli, L. Carraresi, M. Gurioli, Q. Wei, “Transmission of a pulsed thin light beam through thick turbid media: experimental results,” Appl. Opt. 31, 2141–2147 (1992).

[CrossRef]
[PubMed]

G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031–2041 (1991).

[CrossRef]
[PubMed]

P. Bruscaglioni, G. Zaccanti, “Multiple scattering in dense media,” in Scattering in Volumes and Surfaces, M. Nietol Vesperinas, J. Dainty, eds. (Elsevier, New York, 1990), pp. 53–71.

G. Zaccanti, University of Florence, Physics Department, 3 Via S. Marta, 50139 Firenze, Italy (personal communication, 1994).

G. Zaccanti, P. Bruscaglioni, A. Ismaelli, L. Carraresi, M. Gurioli, Q. Wei, “Transmission of a pulsed thin light beam through thick turbid media: experimental results,” Appl. Opt. 31, 2141–2147 (1992).

[CrossRef]
[PubMed]

R. Graaf, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).

[CrossRef]

R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosh, “Scattering and absorption of turbid materials determined from reflection measurements. 1. Theory,” Appl. Opt. 22, 2456–2461 (1983).

[CrossRef]
[PubMed]

E. A. Bucher, “Computer simulation of light pulse propagation for communication through thick clouds,” Appl. Opt. 12, 2391–2400 (1973).

[CrossRef]
[PubMed]

R. R. Meier, J. S. Lee, D. E. Anderson, “Atmospheric scattering of middle uv radiation from an internal source,” Appl. Opt. 17, 3216–3225 (1978).

[CrossRef]
[PubMed]

G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031–2041 (1991).

[CrossRef]
[PubMed]

S. L. Jacques, “Time-resolved propagation of ultrashort laser pulses within turbid tissues,” Appl. Opt. 28, 2223–2229 (1989).

[CrossRef]
[PubMed]

L. Henyey, J. Greenstein, “Diffuse radiation in the Galaxy,” Astrophys. J. 93, 70–83 (1941).

[CrossRef]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modelling of light propagation in highly scattering tissues: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1167 (1989).

[CrossRef]
[PubMed]

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).

[CrossRef]
[PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy: phantom and preliminary in vivo results,” Invest. Radiol. 29, 410–414 (1994).

[CrossRef]
[PubMed]

S. Avrillier, E. Tinet, E. Delettre, “Monte Carlo simulation of collimated beam transmission through turbid media,” J. Phys. (Paris) 51, 2521–2542 (1990).

[CrossRef]

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).

[CrossRef]
[PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).

[CrossRef]
[PubMed]

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).

[CrossRef]
[PubMed]

M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Time-gated imaging through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868–1870 (1991).

[CrossRef]
[PubMed]

M. R. Hee, J. A. Izatt, J. M. Jacobson, G. Fujimoto, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18, 950–952 (1993).

[CrossRef]
[PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time-resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. SPIE1203, 62–75 (1990).

[CrossRef]

P. Bruscaglioni, G. Zaccanti, “Multiple scattering in dense media,” in Scattering in Volumes and Surfaces, M. Nietol Vesperinas, J. Dainty, eds. (Elsevier, New York, 1990), pp. 53–71.

G. Zaccanti, University of Florence, Physics Department, 3 Via S. Marta, 50139 Firenze, Italy (personal communication, 1994).

G. Goertzel, M. H. Kalos, “Monte Carlo methods in transport problems,” in Series I of Progress in Nuclear Energy (Pergamon, New York, 1958), Vol. 2, pp. 315–369.

M. H. Kalos, P. Whitlock, “Random walks and integral equations,” in Monte Carlo Methods (Wiley, New York, 1986), Vol. I, Chap. 7, pp. 145–156.

[CrossRef]

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, New York, 1970).

H. C. van de Hulst, Multiple Light Scattering, Tables, Formulas and Applications (Academic, New York, 1980).

L. Wang, S. L. Jacques, “Monte Carlo simulation of photon distribution in multi-layered turbid media in ANSI standard c,” (Copyright University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, 1992).

C. M. Gardner, A. J. Welch, “Improvements in the accuracy and statistical variance of the Monte Carlo simulation of light distribution in tissue,” in Laser–Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE1646, 400–409 (1992).

[CrossRef]