Abstract

Using a fully vectorial three-dimensional numerical approach (generalized field propagator, based on Green’s tensor technique), we investigate the near-field images produced by subwavelength objects buried in a dielectric surface. We study the influence of the object index, size, and depth on the near field. We emphasize the similarity between the near field spawned by an object buried in the surface (dielectric contrast) and that spawned by a protrusion on the surface (topographic contrast). We show that a buried object with a negative dielectric contrast (i.e., with a smaller index than its surrounding medium) produces a near-field image that is reversed from that of an object with a positive contrast.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a recent overview of SNOM, see D. W. Pohl, D. Courjon, eds., Near Field Optics, NATO ASI Series E (Kluwer, Dordrecht, 1993) and also the special issue of Ultramicroscopy57 (2/3) (February1995).
    [CrossRef]
  2. F. M. Depasse, D. A. Courjon, “Modeling of the field transfer through thick dielectric lines: use in linewidth measurement,” Appl. Optics 30, 1355–1360 (1991).
    [CrossRef]
  3. C. Girard, A. Dereux, “Optical spectroscopy of a surface at the nanometer scale: a theoretical study,” Phys. Rev. B 49, 11344–11351 (1994).
    [CrossRef]
  4. F. Pincemin, A. Sentenac, J.-J. Greffet, “Near field scattered by a dielectric rod below a metallic surface,” J. Opt. Soc. Am. A 11, 1117–1127 (1994).
    [CrossRef]
  5. C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14467–14473 (1994).
    [CrossRef]
  6. L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
    [CrossRef]
  7. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
    [CrossRef]
  8. L. Novotny, D. W. Pohl, B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy (to be published).
  9. C. Girard, A. Dereux, O. J. F. Martin, “Theory of near-field optics,” in Photon and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E (Kluwer, Dordrecht, 1995), pp. 1–20.
    [CrossRef]
  10. N. García, M. Nieto-Vesperinas, “Near-field optics inverse scattering reconstruction of reflective surfaces,” Opt. Lett. 18, 2090–2092 (1993).
    [CrossRef] [PubMed]
  11. N. García, M. Nieto-Vesperinas, “Rough surface retrieval from the specular intensity of multiply scattered waves,” Phys. Rev. Lett. 71, 3645–3648 (1993).
    [CrossRef] [PubMed]
  12. J.-J. Greffet, A. Sentenac, R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995).
    [CrossRef]
  13. N. García, M. Nieto-Vesperinas, “Direct solution to the inverse scattering problem for surfaces from near-field intensities without phase retrieval,” Opt. Lett. 20, 949–951 (1995).
    [CrossRef] [PubMed]
  14. F. Pincemin, A. Sentenac, J.-J. Greffet, “Near field scattered by subsurface particles,” in Near Field Optics, D.W. Pohl, D. Courjon, eds., NATO ASI Series E (Kluwer, Dordrecht, 1993), pp. 209–220.
    [CrossRef]
  15. D. Barchiesi, D. Van Labeke, “PSTM: an alternative to measure local variations of optical index,” Microsc. Microanal. Microstruct. 5, 435–446 (1994).
    [CrossRef]
  16. R. Carminati, J.-J. Greffet, “Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface,” J. Opt. Soc. Am. A 12, 2716–2725 (1995).
    [CrossRef]
  17. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
    [CrossRef]
  18. C. H. Henri, G. E. Blonder, R. F. Kazarinov, “Glass waveguides on silicon for hybrid optical packaging,” J. Lightwave Technol. 7, 1530–1539 (1989).
    [CrossRef]
  19. N. H. G. Baken, M. B. J. Diemeer, J. M. Van Splunter, H. Blok, “Computational modeling of diffused channel waveguides using a domain integral equation,” J. Lightwave Technol. 8, 576–586 (1990).
    [CrossRef]
  20. A. Goo Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, J. T. Boyd, “Near field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
    [CrossRef]
  21. N. van Hulst, M. Moers, E. Borgonjen, “Applications of near field optical microscopy,” in Photon and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E (Kluwer, Dordrecht, 1995), pp. 165–180.
    [CrossRef]
  22. E. Bourillot, F. De Fornel, J. P. Goudonnet, D. Persegol, A. Kevorkian, D. Delacourt, “Analysis of photon-scanning tunneling microscope images of inhomogeneous samples: determination of the local refractive index of channel waveguides,” J. Opt. Soc. Am. A 12, 95–106 (1995).
    [CrossRef]
  23. O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
    [CrossRef] [PubMed]
  24. O. J. F. Martin, A. Dereux, C. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape,” J. Opt. Soc. Am. A 11, 1073–1080 (1994).
    [CrossRef]
  25. D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,” J. Vac. Sci. Technol. B 10, 2436–2439 (1992).
    [CrossRef]
  26. C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986).
  27. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).

1995 (5)

1994 (8)

O. J. F. Martin, A. Dereux, C. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape,” J. Opt. Soc. Am. A 11, 1073–1080 (1994).
[CrossRef]

A. Goo Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, J. T. Boyd, “Near field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
[CrossRef]

D. Barchiesi, D. Van Labeke, “PSTM: an alternative to measure local variations of optical index,” Microsc. Microanal. Microstruct. 5, 435–446 (1994).
[CrossRef]

C. Girard, A. Dereux, “Optical spectroscopy of a surface at the nanometer scale: a theoretical study,” Phys. Rev. B 49, 11344–11351 (1994).
[CrossRef]

F. Pincemin, A. Sentenac, J.-J. Greffet, “Near field scattered by a dielectric rod below a metallic surface,” J. Opt. Soc. Am. A 11, 1117–1127 (1994).
[CrossRef]

C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14467–14473 (1994).
[CrossRef]

L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[CrossRef]

1993 (2)

N. García, M. Nieto-Vesperinas, “Near-field optics inverse scattering reconstruction of reflective surfaces,” Opt. Lett. 18, 2090–2092 (1993).
[CrossRef] [PubMed]

N. García, M. Nieto-Vesperinas, “Rough surface retrieval from the specular intensity of multiply scattered waves,” Phys. Rev. Lett. 71, 3645–3648 (1993).
[CrossRef] [PubMed]

1992 (1)

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,” J. Vac. Sci. Technol. B 10, 2436–2439 (1992).
[CrossRef]

1991 (1)

F. M. Depasse, D. A. Courjon, “Modeling of the field transfer through thick dielectric lines: use in linewidth measurement,” Appl. Optics 30, 1355–1360 (1991).
[CrossRef]

1990 (2)

N. H. G. Baken, M. B. J. Diemeer, J. M. Van Splunter, H. Blok, “Computational modeling of diffused channel waveguides using a domain integral equation,” J. Lightwave Technol. 8, 576–586 (1990).
[CrossRef]

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

1989 (1)

C. H. Henri, G. E. Blonder, R. F. Kazarinov, “Glass waveguides on silicon for hybrid optical packaging,” J. Lightwave Technol. 7, 1530–1539 (1989).
[CrossRef]

Bainier, C.

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,” J. Vac. Sci. Technol. B 10, 2436–2439 (1992).
[CrossRef]

Baken, N. H. G.

N. H. G. Baken, M. B. J. Diemeer, J. M. Van Splunter, H. Blok, “Computational modeling of diffused channel waveguides using a domain integral equation,” J. Lightwave Technol. 8, 576–586 (1990).
[CrossRef]

Barchiesi, D.

D. Barchiesi, D. Van Labeke, “PSTM: an alternative to measure local variations of optical index,” Microsc. Microanal. Microstruct. 5, 435–446 (1994).
[CrossRef]

Blok, H.

N. H. G. Baken, M. B. J. Diemeer, J. M. Van Splunter, H. Blok, “Computational modeling of diffused channel waveguides using a domain integral equation,” J. Lightwave Technol. 8, 576–586 (1990).
[CrossRef]

Blonder, G. E.

C. H. Henri, G. E. Blonder, R. F. Kazarinov, “Glass waveguides on silicon for hybrid optical packaging,” J. Lightwave Technol. 7, 1530–1539 (1989).
[CrossRef]

Borgonjen, E.

N. van Hulst, M. Moers, E. Borgonjen, “Applications of near field optical microscopy,” in Photon and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E (Kluwer, Dordrecht, 1995), pp. 165–180.
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).

Bourillot, E.

Boyd, J. T.

A. Goo Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, J. T. Boyd, “Near field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
[CrossRef]

Carminati, R.

R. Carminati, J.-J. Greffet, “Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface,” J. Opt. Soc. Am. A 12, 2716–2725 (1995).
[CrossRef]

J.-J. Greffet, A. Sentenac, R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[CrossRef]

Courjon, D.

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,” J. Vac. Sci. Technol. B 10, 2436–2439 (1992).
[CrossRef]

Courjon, D. A.

F. M. Depasse, D. A. Courjon, “Modeling of the field transfer through thick dielectric lines: use in linewidth measurement,” Appl. Optics 30, 1355–1360 (1991).
[CrossRef]

De Brabander, G. N.

A. Goo Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, J. T. Boyd, “Near field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
[CrossRef]

De Fornel, F.

Delacourt, D.

Depasse, F. M.

F. M. Depasse, D. A. Courjon, “Modeling of the field transfer through thick dielectric lines: use in linewidth measurement,” Appl. Optics 30, 1355–1360 (1991).
[CrossRef]

Dereux, A.

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

O. J. F. Martin, A. Dereux, C. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape,” J. Opt. Soc. Am. A 11, 1073–1080 (1994).
[CrossRef]

C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14467–14473 (1994).
[CrossRef]

C. Girard, A. Dereux, “Optical spectroscopy of a surface at the nanometer scale: a theoretical study,” Phys. Rev. B 49, 11344–11351 (1994).
[CrossRef]

C. Girard, A. Dereux, O. J. F. Martin, “Theory of near-field optics,” in Photon and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E (Kluwer, Dordrecht, 1995), pp. 1–20.
[CrossRef]

Devel, M.

C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14467–14473 (1994).
[CrossRef]

Diemeer, M. B. J.

N. H. G. Baken, M. B. J. Diemeer, J. M. Van Splunter, H. Blok, “Computational modeling of diffused channel waveguides using a domain integral equation,” J. Lightwave Technol. 8, 576–586 (1990).
[CrossRef]

García, N.

Girard, C.

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

O. J. F. Martin, A. Dereux, C. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape,” J. Opt. Soc. Am. A 11, 1073–1080 (1994).
[CrossRef]

C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14467–14473 (1994).
[CrossRef]

C. Girard, A. Dereux, “Optical spectroscopy of a surface at the nanometer scale: a theoretical study,” Phys. Rev. B 49, 11344–11351 (1994).
[CrossRef]

C. Girard, A. Dereux, O. J. F. Martin, “Theory of near-field optics,” in Photon and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E (Kluwer, Dordrecht, 1995), pp. 1–20.
[CrossRef]

Goo Choo, A.

A. Goo Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, J. T. Boyd, “Near field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
[CrossRef]

Goudonnet, J. P.

Greffet, J.-J.

R. Carminati, J.-J. Greffet, “Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface,” J. Opt. Soc. Am. A 12, 2716–2725 (1995).
[CrossRef]

J.-J. Greffet, A. Sentenac, R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995).
[CrossRef]

F. Pincemin, A. Sentenac, J.-J. Greffet, “Near field scattered by a dielectric rod below a metallic surface,” J. Opt. Soc. Am. A 11, 1117–1127 (1994).
[CrossRef]

F. Pincemin, A. Sentenac, J.-J. Greffet, “Near field scattered by subsurface particles,” in Near Field Optics, D.W. Pohl, D. Courjon, eds., NATO ASI Series E (Kluwer, Dordrecht, 1993), pp. 209–220.
[CrossRef]

Hecht, B.

L. Novotny, D. W. Pohl, B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy (to be published).

Henri, C. H.

C. H. Henri, G. E. Blonder, R. F. Kazarinov, “Glass waveguides on silicon for hybrid optical packaging,” J. Lightwave Technol. 7, 1530–1539 (1989).
[CrossRef]

Jackson, H. E.

A. Goo Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, J. T. Boyd, “Near field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
[CrossRef]

Kawachi, M.

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

Kazarinov, R. F.

C. H. Henri, G. E. Blonder, R. F. Kazarinov, “Glass waveguides on silicon for hybrid optical packaging,” J. Lightwave Technol. 7, 1530–1539 (1989).
[CrossRef]

Kevorkian, A.

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986).

Madrazo, A.

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[CrossRef]

Martin, O. J. F.

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

O. J. F. Martin, A. Dereux, C. Girard, “Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape,” J. Opt. Soc. Am. A 11, 1073–1080 (1994).
[CrossRef]

C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14467–14473 (1994).
[CrossRef]

C. Girard, A. Dereux, O. J. F. Martin, “Theory of near-field optics,” in Photon and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E (Kluwer, Dordrecht, 1995), pp. 1–20.
[CrossRef]

Moers, M.

N. van Hulst, M. Moers, E. Borgonjen, “Applications of near field optical microscopy,” in Photon and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E (Kluwer, Dordrecht, 1995), pp. 165–180.
[CrossRef]

Nieto-Vesperinas, M.

N. García, M. Nieto-Vesperinas, “Direct solution to the inverse scattering problem for surfaces from near-field intensities without phase retrieval,” Opt. Lett. 20, 949–951 (1995).
[CrossRef] [PubMed]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[CrossRef]

N. García, M. Nieto-Vesperinas, “Rough surface retrieval from the specular intensity of multiply scattered waves,” Phys. Rev. Lett. 71, 3645–3648 (1993).
[CrossRef] [PubMed]

N. García, M. Nieto-Vesperinas, “Near-field optics inverse scattering reconstruction of reflective surfaces,” Opt. Lett. 18, 2090–2092 (1993).
[CrossRef] [PubMed]

Novotny, L.

Persegol, D.

Pincemin, F.

F. Pincemin, A. Sentenac, J.-J. Greffet, “Near field scattered by a dielectric rod below a metallic surface,” J. Opt. Soc. Am. A 11, 1117–1127 (1994).
[CrossRef]

F. Pincemin, A. Sentenac, J.-J. Greffet, “Near field scattered by subsurface particles,” in Near Field Optics, D.W. Pohl, D. Courjon, eds., NATO ASI Series E (Kluwer, Dordrecht, 1993), pp. 209–220.
[CrossRef]

Pohl, D. W.

Regli, P.

Sentenac, A.

J.-J. Greffet, A. Sentenac, R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995).
[CrossRef]

F. Pincemin, A. Sentenac, J.-J. Greffet, “Near field scattered by a dielectric rod below a metallic surface,” J. Opt. Soc. Am. A 11, 1117–1127 (1994).
[CrossRef]

F. Pincemin, A. Sentenac, J.-J. Greffet, “Near field scattered by subsurface particles,” in Near Field Optics, D.W. Pohl, D. Courjon, eds., NATO ASI Series E (Kluwer, Dordrecht, 1993), pp. 209–220.
[CrossRef]

Spajer, M.

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,” J. Vac. Sci. Technol. B 10, 2436–2439 (1992).
[CrossRef]

Thiel, U.

A. Goo Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, J. T. Boyd, “Near field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
[CrossRef]

van Hulst, N.

N. van Hulst, M. Moers, E. Borgonjen, “Applications of near field optical microscopy,” in Photon and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E (Kluwer, Dordrecht, 1995), pp. 165–180.
[CrossRef]

Van Labeke, D.

D. Barchiesi, D. Van Labeke, “PSTM: an alternative to measure local variations of optical index,” Microsc. Microanal. Microstruct. 5, 435–446 (1994).
[CrossRef]

Van Splunter, J. M.

N. H. G. Baken, M. B. J. Diemeer, J. M. Van Splunter, H. Blok, “Computational modeling of diffused channel waveguides using a domain integral equation,” J. Lightwave Technol. 8, 576–586 (1990).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).

Appl. Optics (1)

F. M. Depasse, D. A. Courjon, “Modeling of the field transfer through thick dielectric lines: use in linewidth measurement,” Appl. Optics 30, 1355–1360 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

A. Goo Choo, H. E. Jackson, U. Thiel, G. N. De Brabander, J. T. Boyd, “Near field measurements of optical channel waveguides and directional couplers,” Appl. Phys. Lett. 65, 947–949 (1994).
[CrossRef]

J. Lightwave Technol. (2)

C. H. Henri, G. E. Blonder, R. F. Kazarinov, “Glass waveguides on silicon for hybrid optical packaging,” J. Lightwave Technol. 7, 1530–1539 (1989).
[CrossRef]

N. H. G. Baken, M. B. J. Diemeer, J. M. Van Splunter, H. Blok, “Computational modeling of diffused channel waveguides using a domain integral equation,” J. Lightwave Technol. 8, 576–586 (1990).
[CrossRef]

J. Opt. Soc. Am. A (5)

J. Vac. Sci. Technol. B (1)

D. Courjon, C. Bainier, M. Spajer, “Imaging of submicron index variations by scanning optical tunneling,” J. Vac. Sci. Technol. B 10, 2436–2439 (1992).
[CrossRef]

Microsc. Microanal. Microstruct. (1)

D. Barchiesi, D. Van Labeke, “PSTM: an alternative to measure local variations of optical index,” Microsc. Microanal. Microstruct. 5, 435–446 (1994).
[CrossRef]

Opt. Commun. (2)

J.-J. Greffet, A. Sentenac, R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

Phys. Rev. B (2)

C. Girard, A. Dereux, O. J. F. Martin, M. Devel, “Importance of confined fields in near-field optical imaging of subwavelength objects,” Phys. Rev. B 50, 14467–14473 (1994).
[CrossRef]

C. Girard, A. Dereux, “Optical spectroscopy of a surface at the nanometer scale: a theoretical study,” Phys. Rev. B 49, 11344–11351 (1994).
[CrossRef]

Phys. Rev. Lett. (2)

N. García, M. Nieto-Vesperinas, “Rough surface retrieval from the specular intensity of multiply scattered waves,” Phys. Rev. Lett. 71, 3645–3648 (1993).
[CrossRef] [PubMed]

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

Other (7)

C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).

N. van Hulst, M. Moers, E. Borgonjen, “Applications of near field optical microscopy,” in Photon and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E (Kluwer, Dordrecht, 1995), pp. 165–180.
[CrossRef]

F. Pincemin, A. Sentenac, J.-J. Greffet, “Near field scattered by subsurface particles,” in Near Field Optics, D.W. Pohl, D. Courjon, eds., NATO ASI Series E (Kluwer, Dordrecht, 1993), pp. 209–220.
[CrossRef]

For a recent overview of SNOM, see D. W. Pohl, D. Courjon, eds., Near Field Optics, NATO ASI Series E (Kluwer, Dordrecht, 1993) and also the special issue of Ultramicroscopy57 (2/3) (February1995).
[CrossRef]

L. Novotny, D. W. Pohl, B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy (to be published).

C. Girard, A. Dereux, O. J. F. Martin, “Theory of near-field optics,” in Photon and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E (Kluwer, Dordrecht, 1995), pp. 1–20.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Relative total field intensity I/I0, above a dielectric surface (n = 1.500) with a 20 × 20 × 10 nm3 protrusion of same index. The field intensity I is computed 5 nm above the protrusion (i.e., 15 nm above the surface) and normalized with the value I0 that would be obtained without a protrusion. The surface is illuminated by total reflection with a wave propagating in the k direction. Two different incident polarizations are investigated: (a) p polarization (incident electric field E p 0) and (b) s polarization (incident electric field E s 0).

Fig. 2
Fig. 2

Same geometry as in Fig. 1 but with another propagation direction for the incident field.

Fig. 3
Fig. 3

Relative total field intensity I/I0, 5 nm above a perfectly flat surface (n = 1.500) with four 20 × 20 × 10 nm3 buried pads of different indices (see inset). The total field intensity I is normalized to the value I0 measured without buried pads. Same incident fields as in Fig. 1.

Fig. 4
Fig. 4

Relative total field intensity I/I0, 5 nm above the center of a 20 × 20 × 10 nm3 pad of varying index, buried in a perfectly flat surface (n = 1.500). The total field intensity I is computed for the two polarizations depicted in Fig. 1 and normalized to the value I0 measured without a buried pad.

Fig. 5
Fig. 5

Same geometry as in Fig. 3 but with a negative index contrast (the indices of the pads are smaller than the surface index). This negative index contrast leads to the reversed (upside down) image of Fig. 3.

Fig. 6
Fig. 6

Relative total field intensity I/I0, 5 nm above a perfectly flat surface (n = 1.500) with four 20 × 20 × 10 nm3 pads (n = 1.508) buried at different depths. The distance between the top face of each pad and the substrate–air interface is given in the inset. The total field intensity I is normalized to the value I0 measured without buried pads. Same incident fields as in Fig. 1.

Fig. 7
Fig. 7

Relative total field intensity I/I0, 5 nm above a perfectly flat surface (n = 1.500) with four 20 × 20 × h nm3 buried pads (n = 1.508) of varying height: h = 10, 20, 30 and 40 nm. The total field intensity I is normalized to the value I0 measured without buried pads. Same incident fields as in Fig. 1.

Fig. 8
Fig. 8

Relative total field intensity I/I0, 5 nm above a perfectly flat surface (n = 1.500) with four 10-nm-thick buried pads (n = 1.508) of varying area (10 × 10, 20 × 20, 30 × 30, and 40 × 40 nm2). The total field intensity I is normalized to the value I0 measured without buried pads. Same incident fields as in Fig. 1.

Fig. 9
Fig. 9

Relative total field intensity I/I0 above a surface (n = 1.500) with a 20 × 20 × 10 nm3 pad (n = 1.508) buried in the surface and a 20 × 20 × 10 nm3 protrusion on the surface. The field intensity is computed 5 nm above the protrusion. The total field intensity I is normalized to the value I0 measured on a perfectly flat surface. Same incident fields as in Fig. 1.

Fig. 10
Fig. 10

Same geometry as in Fig. 9, but the index of the buried pad is now n = 2.000. Therefore the dielectric contrast between the pad and its surrounding is now the same as the contrast between the protrusion and its surrounding (air). The field intensity is computed 5 nm above the protrusion (i.e., 15 nm above the buried pad). The total field intensity I is normalized to the value I0 measured on a perfectly flat surface. Same incident fields as in Fig. 1.

Fig. 11
Fig. 11

Relative total field intensity I/I0, above a surface (n = 1.500) with a 20 × 20 × 10 nm3 hollow and a 20 × 20 × 10 nm3 protrusion. The field intensity is computed 5 nm above the protrusion (i.e., 15 nm above the hollow). The total field intensity I is normalized to the value I0 measured on a perfectly flat surface. Same incident fields as in Fig. 1.

Fig. 12
Fig. 12

Relative total field intensity I/I0, 15 nm above a dielectric surface (n = 1.500) on which the SNOM acronym is reproduced. The letters S and O are etched in the surface, whereas the letters N and M build on the surface two protrusions of same index. The letters’ thickness and linewidth is 10 nm. The total field intensity I is normalized to the value I0 measured on a perfectly flat surface. Same incident field as in Fig. 1(a) (p polarization).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = n sp 2 - n med 2 n sp 2 + 2 n med 2 r 3 ,

Metrics