Abstract

In a previous paper [ J. Opt. Soc. Am. A 12, 1932 ( 1995)] we presented a method for phase recovery with the transport-of-intensity equation by use of a series expansion. Here we develop a different method for the solution of this equation, which allows recovery of the phase in the case of nonuniform illumination. Though also based on the orthogonal series expansion, the new method does not require any separate boundary conditions and can be more easily adjusted for apertures of various shapes. The discussion is primarily for the case of a circular aperture and Zernike polynomials, but we also outline the solution for a rectangular aperture and Fourier harmonics. The latter example may have some substantial advantages, given the availability of the fast Fourier transform.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (44)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription