Abstract

Aperture synthesis experiments have been performed at optical and millimeter wavelengths with an array designed for self-calibration by means of redundant spacings calibration. This calibration technique, which works at all electromagnetic wavelengths, allows the removal of phase errors caused by antenna positional errors, local oscillator phase shifts, and medium-induced transmission phase errors in a single snapshot without requiring that a model of the source be built. Results are presented that demonstrate the removal of phase errors from optical and passive millimeter-wave images by use of redundant spacings calibration with one- and two-point sources. It is shown that optical simulations provide a valuable method for determining the performance of arrays at millimeter wavelengths.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Appleby, D. G. Gleed, R. N. Anderton, A. H. Lettington, “High-performance passive millimetre-wave imaging,” Opt. Eng. 32, 1370–1373 (1993).
    [CrossRef]
  2. P. J. Napier, A. R. Thomson, R. D. Ekers, “The very large array: design and performance of a modern synthesis radio telescope,” Proc. IEEE 71, 1295–1320 (1983).
    [CrossRef]
  3. A. C. S. Readhead, T. S. Nakajima, T. J. Pearson, G. Neugebauer, J. B. Oke, W. L. W. Sargent, “Diffraction-limited imaging with ground-based optical telescopes,” Astron. J. 95, 1278–1296 (1988).
    [CrossRef]
  4. J. Hecht, “Interferometry takes the measure of stars,” Laser Focus World 31(1), 49–50 (1995).
  5. S. Padin, S. L. Scott, D. P. Woody, N. Z. Scoville, T. V. Seling, R. P. Finch, C. J. Giovanine, R. P. Lawrence, “The Owens Valley millimetre array,” Pub. Astron. Soc. Pac. 103, 461–467 (1991).
    [CrossRef]
  6. European Space Agency, “A proposed medium-term strategy for optical interferometry in space,” Rep. SP-1135ESA, Noordwijk, The Netherlands (1990).
  7. A. R. Thomson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).
  8. J. A. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astrophys. J. Suppl. 15, 417–426 (1974).
  9. A. H. Greenaway, “Self-calibrating dilute-aperture optics,” Digital Image Synthesis and Inverse Optics, A. F. Gmitro, P. S. Idell, I. J. LaHaie, eds., Proc. SPIE1351, 738–748 (1990).
    [CrossRef]
  10. A. H. Greenaway, “Terrestrial optical aperture synthesis technique (TOAST),” Opt. Commun. 58, 149–154 (1986).
    [CrossRef]
  11. A. H. Greenaway, S. E. Clark, R. Appleby, P. M. Blanchard, G. R. G. Erry, “Sparse array design and calibration in passive mm-wave imaging,” in Proceedings of Progress in Electromagnetic Research Symposium (PIERS), B. Arbesser-Rastburg, M. Borgeand, S. Buonomo, J. Belshaw, J. Matagne, J. Noll, eds. (Kluwer Academic, 1994), pp. 911–915.
  12. N. George, T. Stone, “Achromatized holographic phase shifter and modulator,” Opt. Commun. 67, 185–192 (1988).
    [CrossRef]
  13. N. George, S. Radic, “Photomixing of achromatically frequency-modulated incoherent light,” Opt. Lett. 18, 1038–1040 (1993).
    [CrossRef] [PubMed]

1995 (1)

J. Hecht, “Interferometry takes the measure of stars,” Laser Focus World 31(1), 49–50 (1995).

1993 (2)

R. Appleby, D. G. Gleed, R. N. Anderton, A. H. Lettington, “High-performance passive millimetre-wave imaging,” Opt. Eng. 32, 1370–1373 (1993).
[CrossRef]

N. George, S. Radic, “Photomixing of achromatically frequency-modulated incoherent light,” Opt. Lett. 18, 1038–1040 (1993).
[CrossRef] [PubMed]

1991 (1)

S. Padin, S. L. Scott, D. P. Woody, N. Z. Scoville, T. V. Seling, R. P. Finch, C. J. Giovanine, R. P. Lawrence, “The Owens Valley millimetre array,” Pub. Astron. Soc. Pac. 103, 461–467 (1991).
[CrossRef]

1988 (2)

N. George, T. Stone, “Achromatized holographic phase shifter and modulator,” Opt. Commun. 67, 185–192 (1988).
[CrossRef]

A. C. S. Readhead, T. S. Nakajima, T. J. Pearson, G. Neugebauer, J. B. Oke, W. L. W. Sargent, “Diffraction-limited imaging with ground-based optical telescopes,” Astron. J. 95, 1278–1296 (1988).
[CrossRef]

1986 (1)

A. H. Greenaway, “Terrestrial optical aperture synthesis technique (TOAST),” Opt. Commun. 58, 149–154 (1986).
[CrossRef]

1983 (1)

P. J. Napier, A. R. Thomson, R. D. Ekers, “The very large array: design and performance of a modern synthesis radio telescope,” Proc. IEEE 71, 1295–1320 (1983).
[CrossRef]

1974 (1)

J. A. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astrophys. J. Suppl. 15, 417–426 (1974).

Anderton, R. N.

R. Appleby, D. G. Gleed, R. N. Anderton, A. H. Lettington, “High-performance passive millimetre-wave imaging,” Opt. Eng. 32, 1370–1373 (1993).
[CrossRef]

Appleby, R.

R. Appleby, D. G. Gleed, R. N. Anderton, A. H. Lettington, “High-performance passive millimetre-wave imaging,” Opt. Eng. 32, 1370–1373 (1993).
[CrossRef]

A. H. Greenaway, S. E. Clark, R. Appleby, P. M. Blanchard, G. R. G. Erry, “Sparse array design and calibration in passive mm-wave imaging,” in Proceedings of Progress in Electromagnetic Research Symposium (PIERS), B. Arbesser-Rastburg, M. Borgeand, S. Buonomo, J. Belshaw, J. Matagne, J. Noll, eds. (Kluwer Academic, 1994), pp. 911–915.

Blanchard, P. M.

A. H. Greenaway, S. E. Clark, R. Appleby, P. M. Blanchard, G. R. G. Erry, “Sparse array design and calibration in passive mm-wave imaging,” in Proceedings of Progress in Electromagnetic Research Symposium (PIERS), B. Arbesser-Rastburg, M. Borgeand, S. Buonomo, J. Belshaw, J. Matagne, J. Noll, eds. (Kluwer Academic, 1994), pp. 911–915.

Clark, S. E.

A. H. Greenaway, S. E. Clark, R. Appleby, P. M. Blanchard, G. R. G. Erry, “Sparse array design and calibration in passive mm-wave imaging,” in Proceedings of Progress in Electromagnetic Research Symposium (PIERS), B. Arbesser-Rastburg, M. Borgeand, S. Buonomo, J. Belshaw, J. Matagne, J. Noll, eds. (Kluwer Academic, 1994), pp. 911–915.

Ekers, R. D.

P. J. Napier, A. R. Thomson, R. D. Ekers, “The very large array: design and performance of a modern synthesis radio telescope,” Proc. IEEE 71, 1295–1320 (1983).
[CrossRef]

Erry, G. R. G.

A. H. Greenaway, S. E. Clark, R. Appleby, P. M. Blanchard, G. R. G. Erry, “Sparse array design and calibration in passive mm-wave imaging,” in Proceedings of Progress in Electromagnetic Research Symposium (PIERS), B. Arbesser-Rastburg, M. Borgeand, S. Buonomo, J. Belshaw, J. Matagne, J. Noll, eds. (Kluwer Academic, 1994), pp. 911–915.

Finch, R. P.

S. Padin, S. L. Scott, D. P. Woody, N. Z. Scoville, T. V. Seling, R. P. Finch, C. J. Giovanine, R. P. Lawrence, “The Owens Valley millimetre array,” Pub. Astron. Soc. Pac. 103, 461–467 (1991).
[CrossRef]

George, N.

N. George, S. Radic, “Photomixing of achromatically frequency-modulated incoherent light,” Opt. Lett. 18, 1038–1040 (1993).
[CrossRef] [PubMed]

N. George, T. Stone, “Achromatized holographic phase shifter and modulator,” Opt. Commun. 67, 185–192 (1988).
[CrossRef]

Giovanine, C. J.

S. Padin, S. L. Scott, D. P. Woody, N. Z. Scoville, T. V. Seling, R. P. Finch, C. J. Giovanine, R. P. Lawrence, “The Owens Valley millimetre array,” Pub. Astron. Soc. Pac. 103, 461–467 (1991).
[CrossRef]

Gleed, D. G.

R. Appleby, D. G. Gleed, R. N. Anderton, A. H. Lettington, “High-performance passive millimetre-wave imaging,” Opt. Eng. 32, 1370–1373 (1993).
[CrossRef]

Greenaway, A. H.

A. H. Greenaway, “Terrestrial optical aperture synthesis technique (TOAST),” Opt. Commun. 58, 149–154 (1986).
[CrossRef]

A. H. Greenaway, S. E. Clark, R. Appleby, P. M. Blanchard, G. R. G. Erry, “Sparse array design and calibration in passive mm-wave imaging,” in Proceedings of Progress in Electromagnetic Research Symposium (PIERS), B. Arbesser-Rastburg, M. Borgeand, S. Buonomo, J. Belshaw, J. Matagne, J. Noll, eds. (Kluwer Academic, 1994), pp. 911–915.

A. H. Greenaway, “Self-calibrating dilute-aperture optics,” Digital Image Synthesis and Inverse Optics, A. F. Gmitro, P. S. Idell, I. J. LaHaie, eds., Proc. SPIE1351, 738–748 (1990).
[CrossRef]

Hecht, J.

J. Hecht, “Interferometry takes the measure of stars,” Laser Focus World 31(1), 49–50 (1995).

Högbom, J. A.

J. A. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astrophys. J. Suppl. 15, 417–426 (1974).

Lawrence, R. P.

S. Padin, S. L. Scott, D. P. Woody, N. Z. Scoville, T. V. Seling, R. P. Finch, C. J. Giovanine, R. P. Lawrence, “The Owens Valley millimetre array,” Pub. Astron. Soc. Pac. 103, 461–467 (1991).
[CrossRef]

Lettington, A. H.

R. Appleby, D. G. Gleed, R. N. Anderton, A. H. Lettington, “High-performance passive millimetre-wave imaging,” Opt. Eng. 32, 1370–1373 (1993).
[CrossRef]

Moran, J. M.

A. R. Thomson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).

Nakajima, T. S.

A. C. S. Readhead, T. S. Nakajima, T. J. Pearson, G. Neugebauer, J. B. Oke, W. L. W. Sargent, “Diffraction-limited imaging with ground-based optical telescopes,” Astron. J. 95, 1278–1296 (1988).
[CrossRef]

Napier, P. J.

P. J. Napier, A. R. Thomson, R. D. Ekers, “The very large array: design and performance of a modern synthesis radio telescope,” Proc. IEEE 71, 1295–1320 (1983).
[CrossRef]

Neugebauer, G.

A. C. S. Readhead, T. S. Nakajima, T. J. Pearson, G. Neugebauer, J. B. Oke, W. L. W. Sargent, “Diffraction-limited imaging with ground-based optical telescopes,” Astron. J. 95, 1278–1296 (1988).
[CrossRef]

Oke, J. B.

A. C. S. Readhead, T. S. Nakajima, T. J. Pearson, G. Neugebauer, J. B. Oke, W. L. W. Sargent, “Diffraction-limited imaging with ground-based optical telescopes,” Astron. J. 95, 1278–1296 (1988).
[CrossRef]

Padin, S.

S. Padin, S. L. Scott, D. P. Woody, N. Z. Scoville, T. V. Seling, R. P. Finch, C. J. Giovanine, R. P. Lawrence, “The Owens Valley millimetre array,” Pub. Astron. Soc. Pac. 103, 461–467 (1991).
[CrossRef]

Pearson, T. J.

A. C. S. Readhead, T. S. Nakajima, T. J. Pearson, G. Neugebauer, J. B. Oke, W. L. W. Sargent, “Diffraction-limited imaging with ground-based optical telescopes,” Astron. J. 95, 1278–1296 (1988).
[CrossRef]

Radic, S.

Readhead, A. C. S.

A. C. S. Readhead, T. S. Nakajima, T. J. Pearson, G. Neugebauer, J. B. Oke, W. L. W. Sargent, “Diffraction-limited imaging with ground-based optical telescopes,” Astron. J. 95, 1278–1296 (1988).
[CrossRef]

Sargent, W. L. W.

A. C. S. Readhead, T. S. Nakajima, T. J. Pearson, G. Neugebauer, J. B. Oke, W. L. W. Sargent, “Diffraction-limited imaging with ground-based optical telescopes,” Astron. J. 95, 1278–1296 (1988).
[CrossRef]

Scott, S. L.

S. Padin, S. L. Scott, D. P. Woody, N. Z. Scoville, T. V. Seling, R. P. Finch, C. J. Giovanine, R. P. Lawrence, “The Owens Valley millimetre array,” Pub. Astron. Soc. Pac. 103, 461–467 (1991).
[CrossRef]

Scoville, N. Z.

S. Padin, S. L. Scott, D. P. Woody, N. Z. Scoville, T. V. Seling, R. P. Finch, C. J. Giovanine, R. P. Lawrence, “The Owens Valley millimetre array,” Pub. Astron. Soc. Pac. 103, 461–467 (1991).
[CrossRef]

Seling, T. V.

S. Padin, S. L. Scott, D. P. Woody, N. Z. Scoville, T. V. Seling, R. P. Finch, C. J. Giovanine, R. P. Lawrence, “The Owens Valley millimetre array,” Pub. Astron. Soc. Pac. 103, 461–467 (1991).
[CrossRef]

Stone, T.

N. George, T. Stone, “Achromatized holographic phase shifter and modulator,” Opt. Commun. 67, 185–192 (1988).
[CrossRef]

Swenson, G. W.

A. R. Thomson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).

Thomson, A. R.

P. J. Napier, A. R. Thomson, R. D. Ekers, “The very large array: design and performance of a modern synthesis radio telescope,” Proc. IEEE 71, 1295–1320 (1983).
[CrossRef]

A. R. Thomson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).

Woody, D. P.

S. Padin, S. L. Scott, D. P. Woody, N. Z. Scoville, T. V. Seling, R. P. Finch, C. J. Giovanine, R. P. Lawrence, “The Owens Valley millimetre array,” Pub. Astron. Soc. Pac. 103, 461–467 (1991).
[CrossRef]

Astron. J. (1)

A. C. S. Readhead, T. S. Nakajima, T. J. Pearson, G. Neugebauer, J. B. Oke, W. L. W. Sargent, “Diffraction-limited imaging with ground-based optical telescopes,” Astron. J. 95, 1278–1296 (1988).
[CrossRef]

Astrophys. J. Suppl. (1)

J. A. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astrophys. J. Suppl. 15, 417–426 (1974).

Laser Focus World (1)

J. Hecht, “Interferometry takes the measure of stars,” Laser Focus World 31(1), 49–50 (1995).

Opt. Commun. (2)

A. H. Greenaway, “Terrestrial optical aperture synthesis technique (TOAST),” Opt. Commun. 58, 149–154 (1986).
[CrossRef]

N. George, T. Stone, “Achromatized holographic phase shifter and modulator,” Opt. Commun. 67, 185–192 (1988).
[CrossRef]

Opt. Eng. (1)

R. Appleby, D. G. Gleed, R. N. Anderton, A. H. Lettington, “High-performance passive millimetre-wave imaging,” Opt. Eng. 32, 1370–1373 (1993).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

P. J. Napier, A. R. Thomson, R. D. Ekers, “The very large array: design and performance of a modern synthesis radio telescope,” Proc. IEEE 71, 1295–1320 (1983).
[CrossRef]

Pub. Astron. Soc. Pac. (1)

S. Padin, S. L. Scott, D. P. Woody, N. Z. Scoville, T. V. Seling, R. P. Finch, C. J. Giovanine, R. P. Lawrence, “The Owens Valley millimetre array,” Pub. Astron. Soc. Pac. 103, 461–467 (1991).
[CrossRef]

Other (4)

European Space Agency, “A proposed medium-term strategy for optical interferometry in space,” Rep. SP-1135ESA, Noordwijk, The Netherlands (1990).

A. R. Thomson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).

A. H. Greenaway, “Self-calibrating dilute-aperture optics,” Digital Image Synthesis and Inverse Optics, A. F. Gmitro, P. S. Idell, I. J. LaHaie, eds., Proc. SPIE1351, 738–748 (1990).
[CrossRef]

A. H. Greenaway, S. E. Clark, R. Appleby, P. M. Blanchard, G. R. G. Erry, “Sparse array design and calibration in passive mm-wave imaging,” in Proceedings of Progress in Electromagnetic Research Symposium (PIERS), B. Arbesser-Rastburg, M. Borgeand, S. Buonomo, J. Belshaw, J. Matagne, J. Noll, eds. (Kluwer Academic, 1994), pp. 911–915.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Nine-element RSC array used for the optical and the millimeter-wave experiments, (b) psf of the array with no phase errors.

Fig. 2
Fig. 2

Schematic diagram of the millimeter-wave experiment.

Fig. 3
Fig. 3

Diagram of the optical experiment.

Fig. 4
Fig. 4

Experimental images of a point source at millimeter-wavelengths. (a) Raw measured image before RSC (s = 0.42), (b) corrected image after RSC (s = 0.99).

Fig. 5
Fig. 5

Experimental images of a point source at optical wavelengths. (a) Raw measured image before RSC (s = 0.53), (b) corrected image after RSC (s = 0.96).

Fig. 6
Fig. 6

Images of two point sources separated by 0.5 m. (a) Theoretical image through the array with no phase errors, (b) measured millimeter-wavelength image before RSC, (c) millimeter-wavelength image (b) after RSC.

Fig. 7
Fig. 7

Comparison of the performance of RSC at optical and millimeter wavelengths when imaging a point source. Circles, millimeter-wave data; triangles, optical data.

Fig. 8
Fig. 8

Results of computer simulations showing how the array Strehl ratio varies as a function of the SNR.

Fig. 9
Fig. 9

Illustration of the method of phase extraction by use of a diffraction grating.

Fig. 10
Fig. 10

Optical measurements of the −1, 0, and +1 diffraction orders generated by the technique illustrated in Fig. 9 with a single monochromatic point source. (a) Before RSC calibration (s = 0.54), (b) after RSC calibration (s = 0.99).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θ = 1.22 λ / D rad ,
M = A U ,
U = A M .
U [ ϕ 12 ϕ 13 ϕ 14 ϕ 23 ϕ 24 ϕ 34 e 1 e 2 e 3 e 4 ] = A [ a 11 a 12 a 13 a 14 a 15 a 16 · · · · a 21 a 22 a 23 a 24 a 25 a 26 · · · · a 31 a 32 a 33 a 34 a 35 a 36 · · · · a 41 a 42 a 43 a 44 a 45 a 46 · · · · a 51 a 52 a 53 a 54 a 55 a 56 · · · · a 61 a 62 a 63 a 64 a 65 a 66 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ] M [ m 12 m 13 m 14 m 23 m 24 m 34 0 0 0 0 ] .
ϕ 12 = a 11 m 12 + a 12 m 13 + a 13 m 14 + a 14 m 23 + a 15 m 24 + a 16 m 34 .
F = ( a 11 2 + a 12 2 + a 13 2 + a 14 2 + a 15 2 + a 16 2 ) 1 / 2 .

Metrics