Abstract

A Wiener–Lucy (W-L) chain scheme, which is a combination of a Wiener filter in the spatial-frequency domain and a Richardson–Lucy algorithm in the image domain, is proposed as a new deconvolution procedure. The most serious problem of the deconvolution procedure is related to local information losses in its application domain. The W-L chain tends to recover the local information losses in both the frequency and the image domains. The effectiveness of the W-L chain is proved theoretically, with the scheme being shown to converge to the solution of a simple inverse filter without noise enhancement. The W-L chain is applied to an IR shift-and-add image, and it is shown that the higher-frequency components, which are lost in the Wiener filtering, are well recovered.

© 1996 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Blind deconvolution by means of the Richardson–Lucy algorithm

D. A. Fish, A. M. Brinicombe, E. R. Pike, and J. G. Walker
J. Opt. Soc. Am. A 12(1) 58-65 (1995)

Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach

Guozhong Liu, Siavash Yousefi, Zhongwei Zhi, and Ruikang K. Wang
Opt. Express 19(19) 18135-18148 (2011)

Fast and optimal multiframe blind deconvolution algorithm for high-resolution ground-based imaging of space objects

Charles L. Matson, Kathy Borelli, Stuart Jefferies, Charles C. Beckner, Jr., E. Keith Hege, and Michael Lloyd-Hart
Appl. Opt. 48(1) A75-A92 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription